The charged-particle fractional momentum distribution within jets, D(z), has been measured in dijet events from 1.8-TeV p¯p collisions in the Collider Detector at Fermilab. As expected from scale breaking in quantum chromodynamics, the fragmentation function D(z) falls more steeply as dijet invariant mass increases from 60 to 200 GeV/c2. The average fraction of the jet momentum carried by charged particles is 0.65±0.02(stat)±0.08(syst).
No description provided.
Resonance production in the γγ reactionse+e−→e+e+e−π0π0 ande+e−π0η has been studied with the JADE detector at PETRA. The decay widths into γγ of thef2(1270),a0(980) anda2(1320) were measured to be\(\Gamma _{\gamma \gamma } (f_2 (1270)) = 3.19 \pm 0.09_{ - 0.38}^{ + 0.22} \) Kev,Γλλ(a0(980))=0.28±0.04±0.10 KeV/BR(a0(980)→π0η) andΓλλ(a2(1320))=1.01±0.14±0.22KeV. For thef0(975) andf4(2050) upper limits of the widths were obtained,Γλλ(f0(975))<0.6 KeV, andΓλλ(f4(2050))<1.1 KeV, both at the 95% C.L. Assuming that the spin 0 background under thef2(1270) is small, thef2(1270) was found to be produced exclusively in a helicity 2 state. The helicity 0 contribution is <15% at the 95% C.L. The cross section forλλ→π0π0 in the mass range 2.0–3.5 GeV/c2 was measured for the first time. Since the cross section forλλ→π+π− is a factor ∼2 larger, ππ production in this range can be interpreted as taking place via isospin 0 production.
Cross section for ABS(COS(THETA*)) < 0.3.
Cross section under assumptions of spin 2, helicity 2 production.
Cross section under assumption of spin 0 production.
Hadronic decays of Z 0 bosons are studied in the Delphi detector. Global event variables and singel particles inclusive distributions are compared with QCD-based predictions. The mean charged multiplicity is found to be 20.6±1.0 (stat+syst). The mean values of the sphericity, aplanarity, thrust, minor value, p in T and p out T are compared with values found at lower energy e + e − colliders.
Corrected Sphericity distribution. Statistical errors only.
Corrected Aplanarity distribution. Statistical errors only.
Corrected Q3-Q2 distribution. Statistical errors only.
We present measurements of the pseudorapidity (η) distribution of charged particles (dNchdη) produced within |η|≤3.5 in proton-antiproton collisions at s of 630 and 1800 GeV. We measure dNchdη at η=0 to be 3.18±0.06(stat)±0.10(syst) at 630 GeV, and 3.95±0.03 (stat)±0.13(syst) at 1800 GeV. Many systematic errors in the ratio of dNchdη at the two energies cancel, and we measure 1.26±0.01±0.04 for the ratio of dNchdη at 1800 GeV to that at 630 GeV within |η|≤3. Comparing to lower-energy data, we observe an increase faster than ln(s) in dNchdη at η=0.
General rapidity densities.
No description provided.
Differential pseudorapidity distribution.. The numbers here at 1800 GeV have been taken from the HZTool routine hzf89201e provded by Arthur Moraes.
The production of charged kaon pairs in two-photon interactions has been studied with the ARGUS detector and the topological cross section has been measured. The γγ-widths and interference parameters have been determined for the tensor mesonsf2 (1270),a2 (1318) andf′2 (1525). The helicity structure assumed for the continuum contribution has a significant effect on the result. Upper limits have been obtained for the γγ-widths of the glueball candidate statesf2 (1720) andX (2230).
Data read from graph.. Errors are the square roots of the number of events.
Cross section allowing for spin components JM = 22,20,00. Data read from graph.. Additional overall systematic error 8.4%.
Cross section allowing for spin components JM = 22,00. Data read from graph.. Additional overall systematic error 8.4%.
We present the general properties of multihadron final states produced by e+e− annihilation at center-of-mass energies from 52 to 57 GeV in the AMY detector at the KEK collider TRISTAN. Global shape, inclusive charged-particle, and particle-flow distributions are presented. Our measurements are compared with QCD+fragmentation models that use either leading-logarithmic parton-shower evolution or QCD matrix elements at the parton level, and either string or cluster fragmentation for hadronization.
Rapidity distribution with respect to the Thrust axis.
Charged particle X distribution.
Charged particle PL distribution.
The analyzing power (spin-dependent azimuthal asymmetry) has been observed for the first time in the nuclear Coulomb coherent production process, the ‘‘Primakoff process,’’ with the use of the newly constructed 185-GeV/c Fermilab polarized proton beam. We have observed a large asymmetry of this process in the regions of ‖t’‖<0.001 (GeV/c)2 and 1.36<M(π0p)<1.52 GeV/c2, where the Coulomb process is predominant. The measured asymmetry is consistent with the analyzing power of the existing low-energy γ+p→π0+p data.
No description provided.
No description provided.
Multiplicity distributions of charged particles produced in the pseudorapidity range 0.9 < η lab < 5.5 were measured in oxygen-nucleus collisions for Al, Ag, and W target nuclei at incident energies of 60 and 200 GeV per nucleon. The multiplicity differential cross sections and the pseudorapidity distributions as a function of transverse energy are presented for the various target nuclei. The correlation between charged multiplicity and transverse energy is studied as a function of transverse energy. Data are compared with predictions of the IRIS and FRITIOF generators.
No description provided.
No description provided.
No description provided.
The HELIOS experiment has measured inclusivep⊥ spectra of negative particles in the rapidity region 1.0<y<1.9. The general shape of thep⊥ spectra in p +W, O+W and S+W is similar, but cannot be described by a single exponential. Compared to p+p collisions, an excess is observed for low and highp⊥. This effect increases with the projectile mass. Except for very lowE⊥, the average transverse momentum <p⊥> is found to be approximately constant up to the highest accessible values ofE⊥.
No description provided.
No description provided.
No description provided.
We have observed hadronic final states produced in the decays of Z bosons. In order to study the parton structure of these events, we compare the distributions in sphericity, thurst, aplanarity, and number of jets to the predictions of several QCD-based models and to data from lower energies. The data and models agree within the present statistical precision.
Corrected event shape distributions.
Corrected event shape distributions.
Corrected event shape distributions.