The fragmentation function for the process e+e−→h+X, whereh represents a hadron, may be decomposed into transverse, longitudinal and asymmetric contributions by analysis of the distribution of polar production angles. A number of new tests of QCD have been proposed using these fragmentation functions, but so far no data have been published on the separate components. We have performed such a separation using data on charged particles from hadronic Z0 decays atOpal, and have compared the results with the predictions of QCD. By integrating the fragmentation functions, we determine the average charged particle multiplicity to be\(\overline {n_{ch} }= 21.05 \pm 0.20\). The longitudinal to total cross-section ratio is determined to be σL/σtot=0.057±0.005. From the longitudinal fragmentation function we are able to extract the gluon fragmentation function. The connection between the asymmetry fragmentation function and electroweak asymmetrics is discussed.
Transverse component of the fragmentation function.
Longitudinal component of the fragmentation function.
Asymmetry component of the fragmentation function.
We have measured the multiplicity of charm quark pairs arising from gluon splitting in a sample of about 3.5 million hadronic Z 0 decays. By selecting a 3-jet event topology and tagging charmed hadrons in the lowest energy jet using leptons, we established a signature of heavy quark pair production from gluons. The average number of gluons splitting into a c c pair per hadronic event was measured to be n g→c c =(2.27±0.28±0.41) × 10 −2 .
Axis error includes +- 8.4/8.4 contribution (Total generator error for the electron channel due to the uncertainties in parameters of Peterson model of fragmentation, LAMBDA_QCD, ALPHA_S, Lund fragmentation parameters and lepton decay model).
None
THETA is the angle between hadron and jet's axis. CONST is the parameter used in jet's definition (see text).
CONST is the parameter used in jet's definition (see text).
CONST is the parameter used in jet's definition (see text).
From 1.4 million hadronic Z decays collected by the ALEPH detector at LEP, an enriched sample of Z → cc̄ events is extracted by requiring the presence of a high momentum D ∗± . The charm quark forward-backward charge asymmetry at the Z pole is measured to be A FB 0. c = (8.0 ± 2.4) % corresponding to an effective electroweak mixing angle of sin 2 θ W eff = 0.2302 ± 0.0054.
Value of SIN2TW(eff) from CQ-quark asymmetries.
No description provided.
We present the structure function ratios F2(Li)/F2(D) and F2(C)/F2(D) measured in deep inelastic muon-nucleus scattering at a nominal incident muon energy of 200 GeV. The kinematic range 0.0001 < x < 0.7 and 0.01< Q~2 < 70 GeV~2 is covered. For values of $x$ less than $0.002$ both ratios indicate saturation of shadowing at values compatible with photoabsorption results.
Additional normalization error of 0.004 not included.
Data on F2(C)/F2(DEUT) merged with previous NMC data from Amaudruz et al. 1995, NP B441,3. (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+3106> RED = 3106 </a>). Additional normalization error of 0.004 not included.
This paper presents measurements of \k\ and \lam\ production in neutral current, deep inelastic scattering of 26.7 GeV electrons and 820 GeV protons in the kinematic range $ 10 < Q~{2} < 640 $ GeV$~2$, $0.0003 < x < 0.01$, and $y > 0.04$. Average multiplicities for \k\ and \lam\ production are determined for transverse momenta \ \ptr\ $> 0.5 $ GeV and pseudorapidities $\left| \eta \right| < 1.3$. The multiplicities favour a stronger strange to light quark suppression in the fragmentation chain than found in $e~+ e~-$ experiments. The production properties of \k's in events with and without a large rapidity gap with respect to the proton direction are compared. The ratio of neutral \k's to charged particles per event in the measured kinematic range is, within the present statistics, the same in both samples.
No description provided.
No description provided.
No description provided.
The reaction C12(e,e′pp) has been studied at an energy transfer ω=212MeV and a three-momentum transfer |q|=70MeV/c. The measured missing-energy spectrum shows a signature for knockout of proton pairs from (1p)2, (1p,1s), and (1s)2 states. A comparison of the data with a calculation, in which different processes leading to two-nucleon knockout are accounted for, shows that the measured cross section for the knockout of a (1p)2 pair can largely be attributed to short-range nucleon-nucleon correlations.
No description provided.
No description provided.
No description provided.
We have directly measured the ZZ-gamma and Z-gamma-gamma couplings by studying p pbar --> l+ l- gamma + X, (l = e, mu) events at the CM energy of 1.8$TeV with the D0 detector at the Fermilab Tevatron Collider. A fit to the transverse energy spectrum of the photon in the signal events, based on the data set corresponding to an integrated luminosity of 13.9 pb~-1 ($13.3 pb~-1) for the electron (muon) channel, yields the following 95% confidence level limits on the anomalous CP-conserving ZZ-gamma couplings: -1.9 < h~Z_30 < 1.8 (h~Z_40 = 0), and -0.5 < h~Z_40 < 0.5 (h~Z_30 = 0), for a form-factor scale Lambda = 500 GeV. Limits for the Z-gamma-gamma$ couplings and CP-violating couplings are also discussed.
The anomalous CP-conserving Z Z GAMMA. CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: h = hi0/(1 + M(gamma Z)**2/CONT(NAME=SCALE)**2)**n. See article for details.
We establish the existence of the top quark using a 67 pb^-1 data sample of Pbar-P collisions at Sqrt(s) = 1.8 TeV collected with the Collider Detector at Fermilab (CDF). Employing techniques similar to those we previously published, we observe a signal consistent with t-tbar decay to WW b-bbar, but inconsistent with the background prediction by 4.8 sigma. Additional evidence for the top quark is provided by a peak in the reconstructed mass distribution. We measure the top quark mass to be 176 +/-8(stat) +/- 10(sys.) GeV/c^2, and the t-tbar production cross section to be 6.8 +3.6 -2.4 pb.
Cross section refers to top quark mass equal 176. (+- 8 +- 10) GeV.. Error contains both statistical and systematic uncertainty.