Study of the Scaling in the Mean and of the Associative Multiplicity in Inclusive $K^0_S$ and $\Lambda$ Production in $\bar{P} P$ Interactions at 22.4-{GeV}/c.

The Dubna-Alma Ata-Helsinki-Moscow-Prague-Tbilisi collaboration Batyunya, B.V. ; Boguslavsky, I.V. ; Gramenitsky, I.M. ; et al.
Sov.J.Nucl.Phys. 33 (1981) 373, 1981.
Inspire Record 154157 DOI 10.17182/hepdata.39558

None

1 data table match query

No description provided.


Study of the Reaction $\bar{p} p \to p X$ at 22.4-{GeV}/$c$

The Alma Ata-Dubna-Helsinki-Kosice-Moscow-Prague-Tbilisi collaboration Batyunya, B.V. ; Boguslavsky, I.V. ; Dashian, N.B. ; et al.
Sov.J.Nucl.Phys. 33 (1981) 64-66, 1981.
Inspire Record 154173 DOI 10.17182/hepdata.69635

None

1 data table match query

No description provided.


Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
New J.Phys. 13 (2011) 053033, 2011.
Inspire Record 882098 DOI 10.17182/hepdata.57077

Measurements are presented from proton-proton collisions at centre-of-mass energies of sqrt(s) = 0.9, 2.36 and 7 TeV recorded with the ATLAS detector at the LHC. Events were collected using a single-arm minimum-bias trigger. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. Measurements in different regions of phase-space are shown, providing diffraction-reduced measurements as well as more inclusive ones. The observed distributions are corrected to well-defined phase-space regions, using model-independent corrections. The results are compared to each other and to various Monte Carlo models, including a new AMBT1 PYTHIA 6 tune. In all the kinematic regions considered, the particle multiplicities are higher than predicted by the Monte Carlo models. The central charged-particle multiplicity per event and unit of pseudorapidity, for tracks with pT >100 MeV, is measured to be 3.483 +- 0.009 (stat) +- 0.106 (syst) at sqrt(s) = 0.9 TeV and 5.630 +- 0.003 (stat) +- 0.169 (syst) at sqrt(s) = 7 TeV.

2 data tables match query

The average charged-particle muliplicity per unit of rapidity for ETARAP=0 as a function of the centre-of-mass energy.

The average charged-particle muliplicity per unit of rapidity in the pseudorapidity region -2.5 to 2.5 for events with 2 or more charged particles as a function of the centre-of-mass energy.


Systematic Measurements of Identified Particle Spectra in pp, d+Au and Au+Au Collisions from STAR

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 79 (2009) 034909, 2009.
Inspire Record 793126 DOI 10.17182/hepdata.104931

Identified charged particle spectra of $\pi^{\pm}$, $K^{\pm}$, $p$ and $\pbar$ at mid-rapidity ($|y|<0.1$) measured by the $\dedx$ method in the STAR-TPC are reported for $pp$ and d+Au collisions at $\snn = 200$ GeV and for Au+Au collisions at 62.4 GeV, 130 GeV, and 200 GeV. ... [Shortened for arXiv list. Full abstract in manuscript.]

6 data tables match query

Energy loss effect for $\pi^{+-}$ (a), $K^{+-}$ (b), and p and pbar (c) at mid-rapidity (|y| < 0.1) as a function of particle momentum magnitude in 200 GeV pp and 62.4 GeV central 0-5% Au+Au collisions. Only negative particles are shown; energy loss for particles and antiparticles are the same. Errors shown are statistical only. The pion energy loss is already corrected by the track reconstruction algorithm.

Energy loss effect for $\pi^{+-}$ (a), $K^{+-}$ (b), and p and pbar (c) at mid-rapidity (|y| < 0.1) as a function of particle momentum magnitude in 200 GeV pp and 62.4 GeV central 0-5% Au+Au collisions. Only negative particles are shown; energy loss for particles and antiparticles are the same. Errors shown are statistical only. The pion energy loss is already corrected by the track reconstruction algorithm.

Energy loss effect for $\pi^{+-}$ (a), $K^{+-}$ (b), and p and pbar (c) at mid-rapidity (|y| < 0.1) as a function of particle momentum magnitude in 200 GeV pp and 62.4 GeV central 0-5% Au+Au collisions. Only negative particles are shown; energy loss for particles and antiparticles are the same. Errors shown are statistical only. The pion energy loss is already corrected by the track reconstruction algorithm.

More…