Based on a sample of about 3500 events, we have measured the total and differential cross sections of p p → n n in the 700–760 MeV/ c incident momentum region. It is found that σ CE = 10.7 ± 0.2 mb at the average momentum of 730 MeV/ c . The differential angular distribution is characterised by a sharp peak and a dip in the forward direction followed by a secondary maximum. The position of the dip corresponds to | t | ≈ m π 2 . These results are compared with the predictions of the model of Bryan-Phillips. On the other hand, this dip-bump structure can be well understood on a simple picture involving a π exchange and a constant background (for | t | ≲ 3 m π 2 ).
No description provided.
No description provided.
No description provided.
A 7.5 GeV linearly polarized photon beam was used to study ϱ 0 production on d, n and p in the SLAC 82 inch bubble chamber. The production of ϱ 0 is found to proceed mainly via t -channel natural parity exchange and to conserve s -channel c.m.s. helicity for small t . The I = 1 contribution to the γ N → ϱ 0 t -channel amplitude is found to be small at 7.5 GeV.
ERRORS QUOTED INCLUDE BOTH STATISTICAL AND SYSTEMATIC UNCERTAINTIES.
THE FOURTH REACTION IS THE SUM OF THE FIRST THREE, NAMELY THE CLOSURE DIFFERENTIAL CROSS SECTION.
DIPION EVENTS IN THE RHO0 MASS REGION (600 TO 880 MEV).
Results are presented of a bubble chamber experiment on K − p elastic scattering at 14.3 GeV/ c , in four-momentum transfer range 0.04 < | t | < 2.74 GeV 2 using an initial set of 40 000 events. The total elastic cross section is (2.96 ± 0.10) mb. The results are compared with K + p elastic scattering data at 13.8 GeV/ c , and the effective Regge trajectory is calculated using K − p data from 5 to 100 GeV/ c .
FOR -T < 0.04 GEV**2, CROSS SECTION WAS EXTRAPOLATED TO THE OPTICAL POINT WITH -0.055+-0.040 FOR THE REAL/IMAGINARY RATIO OF THE FORWARD AMPLITUDE.
No description provided.
We have studied photoproduction using a 1 m streamer chamber at DESY and a tagged photon beam with an energy range of 1.6 GeV < E γ < 6.3 GeV. We analysed approximately 30 000 events and report topological, channel and resonance production cross sections for a large number of reactions with three and five outgoing charged particles.
CHANNEL CROSS SECTIONS FOR 3, 5 AND 7 PRONG REACTIONS.
'PARAMETRIZATION'.
'INTERFERENCE'.
We present results on the differential cross-sections for the reactions π + p → K + Σ + (1385) and K − p → π − Σ + (1385) at 10 GeV/ c . For the first time, the same equipment has been used in measuring both reactions, in order to obtain good relative normalization. In the region of low t ( t min to −0.3 (GeV/ c ) 2 ) the two differential cross-sections have similar shape, and show a sharp forward dip indicating a dominant helicity flip contribution. However, the magnitudes of the cross-sections are significantly different, indicating substantial exchange degeneracy breaking. We find the ratio of the integrated cross-sections for the reactions K − p → π − Σ + (1385) and π + p → K + Σ + (1385) over the range −0.3 < t ′ < 0.0 (GeV/ c ) 2 to be 2.0 ± 0.2.
TMIN = -0.013 GEV**2.
TMIN = +0.012 GEV**2.
The differential cross sections for neutron-proton elastic charge-exchange scattering have been measured with a two-arm technique for incident neutron momenta between 22 and 65 GeV/ c and for values of the momentum transfer squared between 0.002 and 0.8 (GeV/ c ) 2 . The sharp forward peak observed previously at lower energies is also present at momenta up to 65 GeV/ c ; however the s dependence of the cross section is slowing down.
No description provided.
No description provided.
No description provided.
The photoproduction of the ψ(3100) meson from a beryllium target has been measured using an 11.8-GeV bremsstrahlung beam. The energy and angular dependence of the measured spectra may be obtained from an elastic nucleon cross section of the form dσdt=(1.01±0.20)exp[(1.25±0.20)t] nb/GeV2. This cross section is exceedingly small in comparison with those of the other vector mesons.
ELECTRON PAIR PRODUCTION FROM BERYLLIUM TARGET. ELASTIC CROSS SECTION VALUE ALLOWS FOR SYSTEMATIC UNCERTAINTIES AND POSSIBLE INELASTIC CONTRIBUTIONS. -TMIN = 0.41 GEV**2.
Proton-deuteron elastic scattering has been measured in the four-momentum transfer squared region 0.013<|t|<0.14 (GeV/c)2 and for incident proton beam momenta from 50 to 400 GeV/c. The data can be fitted with the Bethe interference formula. We observe shrinkage of the diffraction cone with increasing energy equal to (0.94±0.04)ln(s1 GeV2) (GeV/c)−2. This shrinkage is greater than that observed in pp elastic scattering. The ratio of the elastic to the total cross section is approximately 0.1 and independent of energy above ∼ 150 GeV. In order to extract information on pn scattering we fit our data using the Glauber approach and a form factor which is the sum of exponentials. The values we obtain for the slope parameter in pn scattering are sensitive to the details of the inelastic double-scattering term.
.
.
.
The K L o p → K S o p differential and total cross-section and the forward scattering amplitude phase φ have been measured in the 1.5 to 2.3 GeV centre of mass energy range. The data is compared with predictions based on recent K ± N phase shift solutions. Best agreement is found for K + N solutions which do not warrant an I=0 P 1 2 exotic Z ∗ o (1800) baryon.
No description provided.
No description provided.
Cross sections for γd and γn interactions and photoproduction of ϱ 0 and ω are studied at 4.3 GeV, using a linearly polarized photon beam in a deuterium bubble chamber. We find that σ T (γ n ) ⋍ σ T (γ p ) within about 5% and that the γn average charge multiplicity is lower than γp by 0.42±0.09. About 4000 ϱ 0 events and 70 coherent ω events are observed. We present total and differential cross sections for both xoherent and incoherent ϱ 0 production on deuterium, as well as decay angular distributions and density-matrix elements. We find that the t -channel isospin-one exchange amplitude in γ N → ϱ 0 N (e.g. A 2 exchange) is at most 5–13% of the dominant isoscalar amplituds. The ϱ 0 production mechanism is dominantly s -channel helicity-conserving (SHC) on both neutrons and protons. We find that relative to the SHC amplitudes, the single and double helicity-flip amplitudes at the γϱ 0 vertex are of the order of 10–15% for | t | > 0.25 GeV 2 , and have the same sign on both nucleons. This shows that helicity-flip is mainly due to isoscalar exchanges. The ratio of ω to ϱ 0 coherent forward cross sections is found to be 0.16±0.04. The natural-parity exchange part of γ N → ω N is strongly dominated by isoscalar exchanges, and the magnitude of the isovector-exchange is consistent with zero.
TOPOLOGICAL CROSS SECTIONS AND AVERAGE CHARGE MULTIPLICITIES GIVEN IN TABLE 1.
'PARAMETRIZATION'.
No description provided.