A measurement is presented of the cross section for D* meson production in diffractive deep-inelastic scattering for the first time at HERA. The cross section is given for the process ep -> eXY, where the system X contains at least one D* meson and is separated by a large rapidity gap from a low mass proton remnant system Y. The cross section is presented in the diffractive deep-inelastic region defined by 2< Q^2 < 100 GeV^2, 0.05 < y < 0.7, x_pom < 0.04, M_Y < 1.6 GeV and |t| < 1 GeV^2. The D* mesons are restricted to the range ptD* > 2 GeV and |\eta_D* | < 1.5. The cross section is found to be 246+-54+-56 pb and forms about 6% of the corresponding inclusive D* cross section. The cross section is presented as a function of various kinematic variables, including z_pom^obs which is an estimate of the fraction of the momentum of the diffractive exchange carried by the parton entering the hard-subprocess. The data show a large component of the cross section at low z_pom^obs where the contribution of the Boson-Gluon-Fusion process is expected to dominate. The data are compared with several QCD--based calculations.
The total D*+- production cross section for the given kinematic region. Also given is the ratio to the DIS*+- production cross section in the samekinematic region.
Cross section as a function of X(NAME=POMERON).
Cross section as a function of LOG10(BETA). BETA = X/X(NAME=POMERON).
The differential cross section of π − p scattering has been measured in the energy region 100–345 GeV and in the t -range 0.002<| t |< 0.04 (GeV/ c ) 2 . The real part of the π − p scattering amplitude has been extracted from the data. The results show that the real part continues to increase with energy. The energy dependence of the slope parameter has also been determined. The shrinkage found expressed in terms of the slope of the pomeron trajectory is2 α ′ p =0.23±0.04 (GeV/ c ) −2 . This agrees with the energy dependence found at larger| t |-values.
RE(AMP)/IM(AMP) (REAL/IMAG) AND SLOPE PARAMETERS DEDUCED FROM A FIT TO D(SIG)/DT IN T HE COULOMB INTERFERENCE REGION (-T = 0.002 TO 0.04 GEV**2).
The spin rotation sf R in pp and π + p elastic scattering at 45 GeV/c has been measured at the Seppukhov accelarator, for z . sfnc ; t |; ranging from 0.2 to 0.5 (GeV/) 2 . The results are presented, together with previous R measurements at lower energies. The equality of the values for R in proton-proton and pion-proton scattering, within the experimental errors, is a test of factorization of the residues in the pomeron exchange.
No description provided.
No description provided.
The polarization in π + p → π + p and K + p → K + p has been measured at 6 and 12 GeV/ c in the four-momentum transfer interval 0.1 ⩽ | t | ⩽ 2.0 (GeV/ c ) 2 by scattering on protons of a polarized deuteron target. Comparison with existing results obtained with polarized proton targets shows good general agreement and no evidence for asymmetry effects due to the presence of the spectator neutron. For K + p elastic scattering polarization the experiment yields improved statistics, especially at 6 GeV/ c
No description provided.
No description provided.
No description provided.
None
No description provided.
Antiproton-proton and proton-proton small-angle elastic scattering was measured for centre-of-mass energies s =30.6, 52.8 and 62.3 GeV at the CERN Intersectung Storage Rings. In addition, proton-proton elastic scattering was measured at s =23.5 GeV . Using the optical theorem, total cross sections are obtained with an accuracy of about 0.5% for proton-proton scattering and about 1% for antiproton-proton scattering. The measurement of the interference of the Coulomb scattering and the hadronic scattering permits a determination of the ratio of the real-to-imaginary part of the forward hadronic scattering amplitude. Also presented are measurements of the hadronic slope parameter.
No description provided.
No description provided.
No description provided.
Antiproton-proton and proton-proton small-angle elastic scattering have been measured for centre-of-mass energies √ s = 30.7 and 62.5 GeV at the CERN Intersecting Storage Rings (ISR). Antiproton-proton and proton-proton total cross sections are obtained using the optical theorem. The measurement of the Coulomb scattering and its interference with the nuclear scattering allows a determination of the ratio of the real-to-imaginary part of the forward nuclear scattering amplitude. Also presented are measurements for the nuclear slope parameter at √ s = 62.5 GeV. Our new results reinforce the conclusions drawn recently from our measurements at √ s = 52.8 GeV. In particular, the pp̄ total cross section is rising at ISR energies and should continue to rise well beyond these energies.
DATA REQUESTED FROM AUTHORS.
RESULTS OF FITS.
No description provided.
The polarization parameter P has been measured for elastic π + p, K + p and pp scattering at 45 GeV/c. Four-momentum transfer ranges from −0.08 to −1.1 (GeV/) 2 for pp, and from −0.08 to −0.9 (GeV/) 2 for π + p and K + p. The energy dependence of the polarization P ( t ) in π + p and in K + p above 6 GeV/c incident momentum is compatible with interference between pomeron and Regge poles. On the other hand, the polarization in p p elastic scattering decreases faster than ordinary Regge model predictions. This result can be explained by interference between non flip and flip amplitudes of the pomeron, leading to negative values for the polarization.
No description provided.
No description provided.
No description provided.
p p elastic total and differential cross sections were measured at 17 incident momenta in the range 374–680 MeV/ c . No prominent feature was seen in them to clearly indicate the existence of the S-meson. There is, however, a small enhancement at the S-meson mass, which is equivalent to the elastic total cross section of 4.6 ± 2.1 mb. The behavior of the Legendre expansion coefficients of the angular distributions with incident momentum agrees well the predictions of the OBE model of Bryan and Phillips.
METHOD OF MOMENTS AND LEAST SQUARES FITS GAVE SIMILAR RESULTS.
No description provided.
No description provided.