The total hadronic photoabsorption cross sections of a number of nuclei (C, Al, Cu, Nb, Sn, Ta, Pb) have been studied in detail using a tagged photon beam over the energy range 1.7-4 GeV. The results are described, and compared with models of photoabsorption.
STATISTICAL ERRORS. MEAN CROSS SECTIONS FOR EACH OF THE TWO ELECTRON BEAM ENERGIES OF 3.5 AND 4.6 GEV ARE ALSO GIVEN.
A-EFFECTIVE/A, USING SIG(GAMMA P) = 137 MUB AND SIG(GAMMA N) = 126 MUB. STATISTICAL ERRORS.
A-EFFECTIVE/A, USING SIG(GAMMA P) = 129 MUB AND SIG(GAMMA N) = 123 MUB. STATISTICAL ERRORS.
Differential cross sections for electron scattering from hydrogen and deuterium in the deep-inelastic region show that the neutron cross section is significantly smaller than the proton cross section over a large part of the kinematic region studied. Although νW2d differs in magnitude from νW2p, it exhibits a similar scaling behavior.
No description provided.
No description provided.
No description provided.
We have measured ep, eπ+, and eπ− coincidences for scattered electrons in the range Q2=0.4 to 2.2 GeV2 and W=2 to 4 GeV. We find (a) that vector-meson production decreases with Q2 more rapidly than does the total virtual-photon-plus-proton cross section, more rapidly even than the prediction of simple vector dominance, (b) that the slope of the t distribution in ρ and ω production becomes flatter with increasing Q2 and seems to be at least approximately a function of the single variable xρ=(Q2+mρ2)2Mν, (c) that the fraction of final states containing a proton decreases with increasing Q2, (d) that in the central region of longitudinal momenta the inclusive π+ yield seems to increase relative to the π− yield as Q2 increases, and (e) that the average transverse momentum of π− is greater than of π+ in the central region of longitudinal momenta.
No description provided.
The data with (C=Q=RHO+OMEGA) are obtained by excluding the contribution from RHO and OMEGA production.
No description provided.
Results are reported based on a study of 3114 π−p events at 205 GeV/c in the National Accelerator Laboratory 30-in. bubble chamber. The measured π−p total and elastic cross sections are 24.0 ± 0.5 and 3.0 ± 0.3 mb, respectively. The elastic differential cross section has a slope of 9.0 ± 0.7 GeV−2 for 0.03≤−t≤0.6 GeV2. The average charged-particle multiplicity for the inelastic events is 8.02 ± 0.12.
No description provided.
No description provided.
Electron-proton elastic scattering cross sections have been measured at squared four-momentum transfers q 2 of 0.67, 1.00, 1.17, 1.50, 1.75, 2.33 and 3.00 (GeV/ c ) 2 and Electron scattering angles θ e between 10° and 20° and at about 86° in the laboratory. The proton electromagnetic form factors G E p and G M p were determined. The results indicate that G E p ( q 2 ) decreases faster with increasing q 2 than G M p ( q 2 ). Quasi-elastic electron-deuteron cross sections have been determined at values of q 2 = 0.39, 0.565, 0.78, 1.0 and 1.5 (GeV/ c ) 2 and scattering angles between 10° and 12°. At q 2 = 0.565 (GeV/ c 2 data have also been taken with θ e = 35° and at q 2 = 1.0 and 1.5 (GeV/ c ) 2 with θ e = 86°. Electron-proton as well as electron-neutron scattering cross sections have been deduced by the ratio method. The theoretical uncertainties of this procedure are shown to be small by comparison of the bound with the free proton cross sections. The magnetic form factor of the neutron G M n derived from the data is consistent with the scaling law. The charge form factor of the neutron is found to be small.
Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).
Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).
Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).
The joint decay density-matrix elements have been measured for the ρ0Δ++ and ωΔ++ channels at 3.7 GeV/c. The data are presented as a function of momentum transfer in both the t-channel and s-channel coordinate systems. The presence of correlated decays is illustrated for both reactions by employing selective cuts on the decay angles of one resonance, and displaying the effects on the decay distribution of the opposing resonance. An amplitude analysis is performed with the data near 0° production angle, where we obtain a helicity decomposition of the scattering amplitude with no experimental ambiguity.
T-CHANNEL COORDINATE SYSTEM (XYZ=TH).
T-CHANNEL COORDINATE SYSTEM (XYZ=TH).
S-CHANNEL COORDINATE SYSTEM (XYZ=SH).
We have measured ρ0, ω (combined) and ϕ electroproduction over a range of virtual-photon four-momentum Q2 from 0.4 to 2.2 GeV2 and for photon energies ν from 2.7 to 8.6 GeV. We find that the slope of the t (momentum transfer) dependence of the ρ0 and ω forward peak decreases with increasing Q2 to less than half of the photoproduction slope.
The cross section for virtual photon are derived from E- P cross section bydividing on the virtual-photon flux factor.
The total electromagnetic cross sections of g-rays in hydrogen and deuterium have been measured over the energy range 265–4215 MeV using a photon tagging system. From these measurements, the total pair production cross sections are obtained, and the results are found to be in good agreement with the predictions of Jost, Luttinger and Slotnick.
Axis error includes +- 1/1 contribution.
Axis error includes +- 1/1 contribution.
The total cross section for photoproduction of hadrons on the deutron, σ T d , has been measured for photon energies in the range 0.265–40215 GeV. From this, using results for the photon total cross section, obtained previously with the same apparatus, the neutron total cross section has been determined in the resonance region. The resonant structure is found to be quite different from that for the proton. Thereafter the neutron cross section falls off steadily with energy, and the values obtained are consistently lower than those for the proton. Forward scattering amplitudes have been evaluated for the deuteron.
No description provided.
RESONANCE REGION. UNSMEARING CORRECTION APPLIED, GLAUBER CORRECTION NEGLIGIBLE.
HIGHER ENERGY CROSS SECTIONS, IN 200 MEV BINS. OVERALL 3 PCT SYSTEMATIC ERROR IN ADDITION TO QUOTED STATISTICAL ERRORS. NEUTRON/PROTON CROSS SECTION RATIO HAS MEAN VALUE OF 0.94 +- 0.01.
Differential cross-sections for proton-proton elastic scattering have been measured covering the angular range from 50° to 90° c.m. at twelve incident momenta from 1.3 to 3.0 GeV/c. The angular distributions are quite smooth, but there is evidence of structure in the energy dependence of fixed-angle cross-sections at |t| ∼ 1 (GeV)2.
No description provided.
No description provided.
No description provided.