Measurement of the centrality dependence of the charged-particle pseudorapidity distribution in proton--lead collisions at $\sqrt{s_{_{\rm{NN}}}} = 5.02$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Eur.Phys.J.C 76 (2016) 199, 2016.
Inspire Record 1386475 DOI 10.17182/hepdata.69240

The centrality dependence of the mean charged-particle multiplicity as a function of pseudorapidity is measured in approximately 1 $\mu$b$^{-1}$ of proton--lead collisions at a nucleon--nucleon centre-of-mass energy of $\sqrt{s_{_{\rm{NN}}}} = 5.02$ TeV using the ATLAS detector at the Large Hadron Collider. Charged particles with absolute pseudorapidity less than 2.7 are reconstructed using the ATLAS pixel detector. The $p$+Pb collision centrality is characterised by the total transverse energy measured in the Pb-going direction of the forward calorimeter. The charged-particle pseudorapidity distributions are found to vary strongly with centrality, with an increasing asymmetry between the proton-going and Pb-going directions as the collisions become more central. Three different estimations of the number of nucleons participating in the $p$+Pb collision have been carried out using the Glauber model as well as two Glauber--Gribov inspired extensions to the Glauber model. Charged-particle multiplicities per participant pair are found to vary differently for these three models, highlighting the importance of including colour fluctuations in nucleon--nucleon collisions in the modelling of the initial state of $p$+Pb collisions.

5 data tables

The $\langle N_{\mathrm{part}} \rangle$ values and their uncertainties for centrality intervals used in this analysis together with asymmetric systematic uncertainties for Glauber model, GGFC with $\omega$=0.11 and GGFC with $\omega$=0.2.

Centrality dependence of the charged particle pseudorapidity distribution measured in several centrality intervals for charged particles with $p_{T} > 0.1$ GeV. The first uncertainty is statistical the second systematic.

Centrality dependence of the charged particle pseudorapidity distribution measured in several centrality intervals for charged particles with $p_{T} > 0$ GeV. The first uncertainty is statistical the second systematic.

More…

Study of Z production in PbPb and pp collisions at sqrt(s[NN]) = 2.76 TeV in the dimuon and dielectron decay channels

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 03 (2015) 022, 2015.
Inspire Record 1322726 DOI 10.17182/hepdata.66612

The production of Z bosons is studied in the dimuon and dielectron decay channels in PbPb and pp collisions at sqrt(s[NN]) = 2.76 TeV, using data collected by the CMS experiment at the LHC. The PbPb data sample corresponds to an integrated luminosity of about 150 inverse microbarns, while the pp data sample collected in 2013 at the same nucleon-nucleon centre-of-mass energy has an integrated luminosity of 5.4 inverse picobarns. The Z boson yield is measured as a function of rapidity, transverse momentum, and collision centrality. The ratio of PbPb to pp yields, scaled by the number of inelastic nucleon-nucleon collisions, is found to be 1.06 +/- 0.05 (stat) +/- 0.08 (syst) in the dimuon channel and 1.02 +/- 0.08 (stat) +/- 0.15 (syst) in the dielectron channel, for centrality-integrated Z boson production. This binary collision scaling is seen to hold in the entire kinematic region studied, as expected for a colourless probe that is unaffected by the hot and dense QCD medium produced in heavy ion collisions.

15 data tables

The measured Z boson production cross section in pp collisions as a function of the Z boson pT for the dimuon decay channel in |y|<2.0.

The measured Z boson production cross section in pp collisions as a function of the Z boson pT for the dielectron decay channel in |y|<1.44.

The measured Z boson production cross section in pp collisions as a function of the Z boson rapidity for the dimuon decay channel.

More…

Measurement of the production and lepton charge asymmetry of $\textit{W}$ bosons in Pb+Pb collisions at $\sqrt{s_{\mathrm{\mathbf{NN}}}}=$ 2.76 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 23, 2015.
Inspire Record 1311623 DOI 10.17182/hepdata.66358

A measurement of $\textit{W}$ boson production in lead-lead collisions at $\sqrt{s_{\mathrm{NN}}}=$2.76 TeV is presented. It is based on the analysis of data collected with the ATLAS detector at the LHC in 2011 corresponding to an integrated luminosity of 0.14 $\mathrm{nb}^{-1}$ and 0.15 $\mathrm{nb}^{-1}$ in the muon and electron decay channels, respectively. The differential production yields and lepton charge asymmetry are each measured as a function of the average number of participating nucleons $< N_{\mathrm{part}} >$ and absolute pseudorapidity of the charged lepton. The results are compared to predictions based on next-to-leading-order QCD calculations. These measurements are, in principle, sensitive to possible nuclear modifications to the parton distribution functions and also provide information on scaling of $\textit{W}$ boson production in multi-nucleon systems.

5 data tables

Ratio of W+ and W- candidates in $W\rightarrow \ell \nu_{\ell}$ as a function of the mean number of participants $N_{part}$.

$W^\pm$ boson production yield per binary collision as a function of the mean number of participants $N_{part}$.

Differential production yield per binary collision for $W^{+}$ bosons as a function of $|\eta_\ell|$.

More…

Measurement of inclusive jet charged-particle fragmentation functions in Pb+Pb collisions at sqrt(s_NN) = 2.76 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 739 (2014) 320-342, 2014.
Inspire Record 1300152 DOI 10.17182/hepdata.64272

Measurements of charged-particle fragmentation functions of jets produced in ultra-relativistic nuclear collisions can provide insight into the modification of parton showers in the hot, dense medium created in the collisions. ATLAS has measured jets in $\sqrt{s_{NN}} = 2.76$ TeV Pb+Pb collisions at the LHC using a data set recorded in 2011 with an integrated luminosity of 0.14 nb$^{-1}$. Jets were reconstructed using the anti-$k_{t}$ algorithm with distance parameter values $R$ = 0.2, 0.3, and 0.4. Distributions of charged-particle transverse momentum and longitudinal momentum fraction are reported for seven bins in collision centrality for $R=0.4$ jets with $p_{{T}}^{\mathrm{jet}}> 100$ GeV. Commensurate minimum $p_{\mathrm{T}}$ values are used for the other radii. Ratios of fragment distributions in each centrality bin to those measured in the most peripheral bin are presented. These ratios show a reduction of fragment yield in central collisions relative to peripheral collisions at intermediate $z$ values, $0.04 \lesssim z \lesssim 0.2$ and an enhancement in fragment yield for $z \lesssim 0.04$. A smaller, less significant enhancement is observed at large $z$ and large $p_{\mathrm{T}}$ in central collisions.

80 data tables

Differences of D(Z) distributions in different centralities with respect to peripheral events for R = 0.3 jets. The errors represent combined statistical and systematic uncertainties.

Differences of D(Z) distributions in different centralities with respect to peripheral events for R = 0.2 jets. The errors represent combined statistical and systematic uncertainties.

D(z) distribution for R=0.4 jets.

More…

Evidence of b-jet quenching in PbPb collisions at sqrt(s[NN]) = 2.76 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.Lett. 113 (2014) 132301, 2014.
Inspire Record 1269454 DOI 10.17182/hepdata.68931

The production of jets associated to bottom quarks is measured for the first time in PbPb collisions at a center-of-mass energy of 2.76 TeV per nucleon pair. Jet spectra are reported in the transverse momentum (pt) range of 80-250 GeV, and within pseudorapidity abs(eta < 2). The nuclear modification factor (R[AA]) calculated from these spectra shows a strong suppression in the b-jet yield in PbPb collisions relative to the yield observed in pp collisions at the same energy. The suppression persists to the largest values of pt studied, and is centrality dependent. The R[AA] is about 0.4 in the most central events, similar to previous observations for inclusive jets. This implies that jet quenching does not have a strong dependence on parton mass and flavor in the jet pt range studied.

13 data tables

The b-jet yield as a function of pT is for the 0-100% centrality class of PbPb collisions. The yields are scaled by the equivalent number of minimum bias events sampled and by TAA.

The b-jet yield as a function of pT is for the 0-10% centrality class of PbPb collisions. The yields are scaled by the equivalent number of minimum bias events sampled and by TAA.

The b-jet yield as a function of pT is for the 10-30% centrality class of PbPb collisions. The yields are scaled by the equivalent number of minimum bias events sampled and by TAA.

More…

Measurement of Z boson Production in Pb+Pb Collisions at sqrt(s_NN)=2.76 TeV with the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Phys.Rev.Lett. 110 (2013) 022301, 2013.
Inspire Record 1193044 DOI 10.17182/hepdata.60336

The ATLAS experiment has observed 1995 Z boson candidates in data corresponding to 0.15 inverse nb of integrated luminosity obtained in the 2011 LHC Pb+Pb run at sqrt(s_NN)=2.76 TeV. The Z bosons are reconstructed via di-electron and di-muon decay channels, with a background contamination of less than 3%. Results from the two channels are consistent and are combined. Within the statistical and systematic uncertainties, the per-event Z boson yield is proportional to the number of binary collisions estimated by the Glauber model. The elliptic anisotropy of the azimuthal distribution of the Z boson with respect to the event plane is found to be consistent with zero.

10 data tables

The corrected per-event rapidity distribution of Z bosons over the centrality region 0-80%.

The corrected per-event transverse momentum distribution of Z bosons in the centrality region 0-5%.

The corrected per-event transverse momentum distribution of Z bosons in the centrality region 5-10%.

More…

Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead Collisions at sqrt(S(NN) ) = 2.76 TeV with the ATLAS Detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.Lett. 105 (2010) 252303, 2010.
Inspire Record 878733 DOI 10.17182/hepdata.63790

Using the ATLAS detector, observations have been made of a centrality-dependent dijet asymmetry in the collisions of lead ions at the Large Hadron Collider. In a sample of lead-lead events with a per-nucleon center of mass energy of 2.76 TeV, selected with a minimum bias trigger, jets are reconstructed in fine-grained, longitudinally-segmented electromagnetic and hadronic calorimeters. The underlying event is measured and subtracted event-by-event, giving estimates of jet transverse energy above the ambient background. The transverse energies of dijets in opposite hemispheres is observed to become systematically more unbalanced with increasing event centrality leading to a large number of events which contain highly asymmetric dijets. This is the first observation of an enhancement of events with such large dijet asymmetries, not observed in proton-proton collisions, and which may point to an interpretation in terms of strong jet energy loss in a hot, dense medium.

4 data tables

Asymmetry in the different centrality regions for 2.76 TeV/Nucleon PB-PB collisions.

Asymmetry in 7 TeV P-P collisions.

DeltaPhi distribution in the different centrality regions for 2.76 TeV/Nucleon PB-PB collisions.

More…

J/psi production at high transverse momentum in p+p and Cu+Cu collisions at \sNN=200GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 80 (2009) 041902, 2009.
Inspire Record 817120 DOI 10.17182/hepdata.55733

The STAR collaboration at RHIC presents measurements of \Jpsi$\to{e^+e^-}$ at mid-rapidity and high transverse momentum ($p_T>5$ GeV/$c$) in \pp and central \cucu collisions at \sNN = 200 GeV. The inclusive \Jpsi production cross section for \cucu collisions is found to be consistent at high $p_T$ with the binary collision-scaled cross section for \pp collisions, in contrast to previous measurements at lower $p_T$, where a suppression of \Jpsi production is observed relative to the expectation from binary scaling. Azimuthal correlations of $J/\psi$ with charged hadrons in \pp collisions provide an estimate of the contribution of $B$-meson decays to \Jpsi production of $13% \pm 5%$.

8 data tables

J/psi differential production cross section in sqrt(s).

J/psi transverse momentum distribution in sqrt(s).

J/psi transverse momentum distribution in sqrt(s).

More…

Version 2
Erratum: Transverse momentum and centrality dependence of high-\pt\ non-photonic electron suppression in Au+Au collisions at \sqrtsNN\ = 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 98 (2007) 192301, 2007.
Inspire Record 721275 DOI 10.17182/hepdata.41842

The STAR collaboration at RHIC reports measurements of the inclusive yield of non-photonic electrons, which arise dominantly from semi-leptonic decays of heavy flavor mesons, over a broad range of transverse momenta ($1.2 < \pt < 10$ \gevc) in \pp, \dAu, and \AuAu collisions at \sqrtsNN = 200 GeV. The non-photonic electron yield exhibits unexpectedly large suppression in central \AuAu collisions at high \pt, suggesting substantial heavy quark energy loss at RHIC. The centrality and \pt dependences of the suppression provide constraints on theoretical models of suppression.

14 data tables

Non photonic electron yield in P+P collisions versus PT To obtain a differential cross-section in mb/(GeV2), multiply listed data by 30 Note that, in addition to the statistical and systematical errors, there is a normalization error on the value, given in the second column.

Non photonic electron yield in P+P collisions versus $p_{T}$. To obtain a differential cross-section in mb/(GeV$^2$), multiply listed data by 30.

Non photonic electron yield in minimum bias D+AU collisions versus PT To obtain a differential cross-section in mb/(GeV2), multiply listed data by 30 Note that, in addition to the statistical and systematical errors, there is a normalization error on the value, given in the second column.

More…

Open charm yields in d + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 94 (2005) 062301, 2005.
Inspire Record 653868 DOI 10.17182/hepdata.43117

Mid-rapidity open charm spectra from direct reconstruction of $D^{0}$($\bar{D^0}$)$\to K^{\mp}\pi^{\pm}$ in d+Au collisions and indirect electron/positron measurements via charm semileptonic decays in p+p and d+Au collisions at \srt = 200 GeV are reported. The $D^{0}$($\bar{D^0}$) spectrum covers a transverse momentum ($p_T$) range of 0.1 $<p_T<$ 3 \GeVc whereas the electron spectra cover a range of 1 $<p_T<$ 4 GeV/$c$. The electron spectra show approximate binary collision scaling between p+p and d+Au collisions. From these two independent analyses, the differential cross section per nucleon-nucleon binary interaction at mid-rapidity for open charm production from d+Au collisions at RHIC is $d\sigma^{NN}_{c\bar{c}}/dy$=0.30$\pm$0.04 (stat.)$\pm$0.09(syst.) mb. The results are compared to theoretical calculations. Implications for charmoniumm results in A+A collisions are discussed.

8 data tables

Inclusive electrons yield versus transverse momentum in D+AU collisions Data points at PT = 2.2, 2.7 and 3.5 GeV/c was obtained using only the TPC (Time Projection Chamber) and cover a pseudo-rapidity range of -1<eta<1, while other points were obtained using both a prototypeTime-of-Flight System and the TPC and cover a pseudo-rapidity range of -1<eta<0.

Inclusive electrons yield versus transverse momentum in P+P collisions.

D0 yield versus transverse momentum in D+AU collisions.

More…