No description provided.
Statistical error only.
No description provided.
No description provided.
From the data collected by DELPHI at LEP in autumn 1995, the multiplicity of charged particles at a hadronic energy of 130 GeV has been measured to be 〈 n ch 〉 = 23.84 ± 0.51 (stat) ± 0.52 (syst). When compared to lower energy data, the value measured is consistent with the evolution predicted by QCD with corrections at next-to-leading order, for a value α s (130 GeV) = 0.105 ± 0.003 (stat) ± 0.008 (syst).
No description provided.
None
The first sytematic error is due to the experimental uncertainties, whilst the second is due to the uncertainties in the quark charge separations.
The polarization of Λ baryons from Z decays is studied with the Aleph apparatus. Evidence of longitudinal polarization of s quarks from Z decay is observed for the first time. The measured longitudinal Λ polarization is P L Λ = −0.32 ± 0.07 for z = p p beam > 0.3 . This agrees with the prediction of −0.39 ± 0.08 from the standard model and the constituent quark model, where the error is due to uncertainties in the mechanism for Λ production. The observed Λ polarization is diluted with respect to the primary s quark polarization by Λ baryons without a primary s quark. Measurements of the Λ forward-backward asymmetry and of the correlation between back-to-back Λ Λ pairs are used to check this dilution. In addition the transverse Λ polarization is measured. An indication of transverse polarization, more than two standard deviations away from zero, is found along the normal to the plane defined by the thrust axis and the Λ direction.
No description provided.
No description provided.
No description provided.
We report our final results from the analysis of the full high statistics sample of events of the reaction ν μ + e − → μ − + ν c collected with the CHARM II detector in the CERN wide-band neutrino beam during the years 1988 to 1991. From a signal of 15758 ± 324 inverse muon decay events we derived, inthe Born approximation, a value of (16.51 ± 0.93) × 10 −42 cm 2 GeV −1 for the asymptotic cross section slope σ E ν , in goodagreement with the Standard Model prediction of 17.23 × 10 −42 cm 2 GeV −1 . The result constrains the scalar coupling of the electron and the muon to | g LL S | 2 < 0.475 at 90% CL.
23.8 is mean neutrino beam energy.
Born approximation of the asymptotic cross section slope obtained by applying radiative corrections, which amount to a 3% effect.. Error is combined statistics and systematics.. 23.8 is mean neutrino beam energy.
The inclusive jet differential cross section has been measured for jet transverse energies, $E_T$, from 15 to 440 GeV, in the pseudorapidity region 0.1$\leq | \eta| \leq $0.7. The results are based on 19.5 pb$~{-1}$ of data collected by the CDF collaboration at the Fermilab Tevatron collider. The data are compared with QCD predictions for various sets of parton distribution functions. The cross section for jets with $E_T>200$\ GeV is significantly higher than current predictions based on O($\alpha_s~3$) perturbative QCD calculations. Various possible explanations for the high-$E_T$\ excess are discussed.
No description provided.
We report measurements of charm particle production asymmetries from the Fermilab photoproduction experiment E687. An asymmetry in the rate of production of charm versus anticharm particles is expected to arise primarily from fragmentation effects. We observe statistically significant asymmetries in the photoproduction of D + , D ∗+ and D 0 mesons and find small (but statistically weak) asymmetries in the production of the D s + meson and the Λ c + baryon. Our inclusive photoproduction asymmetries are compared to predictions from nonperturbative models of charm quark fragmentation.
Production asymmetry. E-gamma = 200 GeV is mean energy. Only reactions for charm particle production are present in the table. SIG(C=ANTI-CHARM) denotes the reaction with anti-charm production.
Antiparticle/particle production ratio. E-gamma = 200 GeV is mean energy. Only reactions for charm particle production are present in the table. SIG(C=ANTI-CHARM) denotes the reaction with anti-charm production.
Production asymmetry for particles produced in association with a D*(2010)+-. E-gamma = 200 GeV is mean energy. Only reactions for charm particle production are present in the table.
We have studied J ψ production in p p collisions at s = 1.8 TeV with the DØ detector at Fermilab using μ + μ − data. We have measured the inclusive J ψ production cross section as a function of J ψ transverse momentum, p T . For the kinematic range p T > 8 GeV/ c and |η| < 0.6 we obtain σ(p p → J ψ + X) · Br ( J ψ → μ + μ − ) = 2.08 ± 0.17( stat) ± 0.46(syst) nb. Using the muon impact parameter we have estimated the fraction of J ψ mesons coming from B meson decays to be f b = 0.35 ± 0.09(stat)±0.10(syst) and inferred the inclusive b production cross section. From the information on the event topology the fraction of nonisolated J ψ events has been measured to be f nonisol = 0.64 ± 0.08(stat)±0.06(syst). We have also obtained the fraction of J ψ events resulting from radiative decays of χ c states, f χ = 0.32 ± 0.07(stat)±0.07(syst). We discuss the implications of our measurements for charmonium production processes.
No description provided.
No description provided.
Integrated b-quark production cross section.
The production of $\phi$ mesons in the reaction $e~{+}p \rightarrow e~{+} \phi p$ ($\phi \rightarrow K~{+}K~{-}$) at a median $Q~{2}$ of $10~{-4} \ \rm{GeV~2}$ has been studied with the ZEUS detector at HERA. The differential $\phi$ photoproduction cross section $d\sigma/dt$ has an exponential shape and has been determined in the kinematic range $0.1<|t|<0.5 \ \rm{GeV~2}$ and $60 < W < 80 \ \rm{GeV}$. An integrated cross section of $\sigma_{\gamma p \rightarrow \phi p} = 0.96 \pm 0.19~{+0.21}_{-0.18}$ $\rm{\mu b}$ has been obtained by extrapolating to {\it t} = 0. When compared to lower energy data, the results show a weak energy dependence of both $\sigma_{\gamma p \rightarrow \phi p}$ and the slope of the $t$ distribution. The $\phi$ decay angular distributions are consistent with $s$-channel helicity conservation. From lower energies to HERA energies, the features of $\phi$ photoproduction are compatible with those of a soft diffractive process.
.
Numerical values of dsig/dt distribution requested from authors.
Numerical values of dsig/dt distribution read from plot.