The DELPHI experiment at LEP uses Ring Imaging Cherenkov detectors for particle identification. The good understanding of the RICH detectors allows the identification of charged pions, kaons and proto
Mean particle multiplicities for Z0-->Q-QBAR events. The second systematic (DSYS) error is due to the extrapolation of the differential distributions to the full kinematic range.
Mean particle multiplicities for Z0-->B-BBAR events. The second systematic (DSYS) error is due to the extrapolation of the differential distributions to the full kinematic range.
Mean particle multiplicities for Z0-->(U-UBAR,D-DBAR,S-SBAR) events. The second systematic (DSYS) error is due to the extrapolation of the differential distributions to the full kinematic range.
None
43 EVENTS WITH LAMBDA, 54 EVENTS WITH KS.
43 EVENTS WITH LAMBDA, 54 EVENTS WITH KS.
43 EVENTS WITH LAMBDA, 54 EVENTS WITH KS. D(N)/D(P) WAS FITTED BY P**2*EXP(-SLOPE*EKIN).
Multihadronic e+e− annihilation events at a center-of-mass energy of 29 GeV have been studied with both the original (PEP 5) Mark II and the upgraded Mark II detectors. Detector-corrected distributions from global shape analyses such as aplanarity, Q2-Q1, sphericity, thrust, minor value, oblateness, and jet masses, and inclusive charged-particle distributions including x, rapidity, p⊥, and particle flow are presented. These distributions are compared with predictions from various multihadron event models which use leading-logarithmic shower evolution or QCD matrix elements at the parton level and string or cluster fragmentation for hadronization. The new generation of parton-shower models gives, on the average, a better description of the data than the previous parton-shower models. The energy behavior of these models is compared to existing e+e− data. The predictions of the models at a center-of-mass energy of 93 GeV, roughly the expected mass of the Z0, are also presented.
Aplanarity distribution.
QX Distribution(QX=SQRT(3)*(Q3-Q2)).
The (Q2-Q1) distribution.
We present evidence for inclusive F-meson production in B-meson decay. The product branching fraction B(B→FX)B(F+→φπ+) is measured to be 0.0038±0.010. The F momentum spectrum indicates the presence of a large component of two-body final states in the decay B→FX.
No description provided.
DATA SAMPLE CONSISTED OF 77 1/PB. DATA TAKEN ON THE PEAK OF THE UPSI(10575).
CONTINUUM DATA SAMPLE CONSISTED OF 36 1/PB. ENERGY JUST BELOW THE UPSI(10575).
We have measured the inclusive branching ratio for B→φX to be 0.023±0.006±0.005. The momentum distribution of the φ mesons is compared with that expected from the cascade decays B→F→φ and B→D→φ. .AE
DATA SAMPLE CONSISTED OF 30.4 1/PB. DATA TAKEN ON THE PEAK OF THE UPSI(10575).
CONTINUUM DATA SAMPLE CONSISTED OF 12.8 1/PB. ENERGY JUST BELOW THE UPSI(10575).
69970 B BBAR EVENTS.
The high mass μ + μ − pairs produced by 280 GeV μ + on a carbon target are studied in a search for the Y production. The high mass continuum in the region 2–18 GeV is interpreted in terms of QED pair production and of μ pairs originating from the decay of hidden and open charm particles as well as of hadrons ( π , K) from deep inelastic interactions. The upper limit for the upsilon production by muons is found to be, at the 90% confidence level, σ γ ·(γ→μ + μ − )<13·10 −39 cm 2 /nucleon.
.
.
.
None
No description provided.
No description provided.
No description provided.