The s dependence of the electromagnetic proton form factors in the time-like region has been determined from the threshold ( s = 4 M p 2 ) up to s = 4.2 GeV 2 . Data were collected in a dedicated experiment performed at the LEAR antiproton ring at CERN, increasing by one order of magnitude the available statistics. Total and differential cross section of the p p → e − e + reaction have been measured. The electric and magnetic form factors are found to have comparable value. The observed form factor shows a clear steep s dependence close to the threshold.
No description provided.
No description provided.
No description provided.
We present preliminary results on the measurement of a variety of exclusive hadron interactions at center of mass scattering angles of 90°. Data are also presented which show the relative transparency of nuclei to πp and pp elastic scattering in this kinematic range.
No description provided.
No description provided.
No description provided.
We have obtained the branching ratios for p p annihilation at rest into π + π − and K + K − in a pure p p initial angular momentum state L = 1. A gaseous hydrogen target at normal pressure and temperature was used and events associated with transitions of the antiprotonic atom to the 2p level were selected by detecting the Balmer X-ray series. The branching ratios for p p annihilation into π + π − and K + K − from the 2p state are (4.81 ± 0.49) × 10 −3 and (2.87 ± 0.51) × 10 −4 , respect The pion yield is slightly larger than in liquid hydrogen, where L = 0 annihilation dominates, while the kaon yield is suppressed by a factor of four. Using these and previous data, we derive the branching ratios for pp annihilation into all ππ and K K modes from S and P states. A measurement in gaseous hydrogen, without X-ray requirement, yields the branching ratios (4.30 ± 0.14) × 10 −3 and (6.92 ± 0.41) × 10 −4 . With the known branching ratios of (3.33 ± 0.17) × 10 −3 and (1.01 ± 0.05) × 10 −3 in liquid hydrogen, we find that (50.3 ± 6.4)% of all annihilations in gas at NTP occur in the initial angular momentum state L = 1.
Axis error includes +- 0.0/0.0 contribution (?////).
Axis error includes +- 0.0/0.0 contribution (?////).
A measurement of the total cross section for the reaction p p → π + π − has been performed for seven values of the incident momentum between 158 and 275 MeV/ c . The values obtained, if compared with previous results at higher momenta, agree with a 1/ß dependence. The differential cross section sssumed over the whole incident momentum range has also been measured and the result of a fit by Legendre polynomials is given.
No description provided.
No description provided.
4*PI*LEG(L=0,P=4) = 1.07 +- 0.13 mb.
Data on the reactions π − p → p π − , p p → π + π − , K − p → pK and p p → p p at 8 and 12 GeV/ c are presented. Our results agree with line reversal symmetry (between π − p → p π − and p p → π + π − ), Regge pole behaviour for non-exotic reactions ( π − p → p π − , p p → π + π − ), and universal behaviour for exotic reactions ( p p → p p , K − p → pK − ) with d σ /d u | u =0 ∼ s −10 excluding the existence of a “glory” mechanism in p p elastic backward scattering in our energy range.
No description provided.
No description provided.
No description provided.
None
No description provided.
The differential cross-sections for the annihilation processes p p→π − π + and p p→K − K + have been measured at an incident laboratory momentum at 5 GeV/ c . Strong backward and forward peaks are observed in the π + π − differential cross-sections while the K + K − cross-section is shown to have a peak only for K − going forward. The annihilation cross-sections are compared with the cross-sections for the crossed channel backward processes π ± p→p π ± and K ± p→pK ± .
No description provided.
No description provided.