None
No description provided.
No description provided.
AVERAGED OVER ALL PRODUCTION ANGLES.
None
THIS HADRON PAIR CROSS SECTION PROVIDES ONLY AN UPPER LIMIT TO THE PION FORM FACTOR ABOVE 1.5 GEV SINCE KAON PRODUCTION IS NOT DISTINGUISHED.
In an exposure of the 30-in. hydrogen bubble chamber to a 303−GeVc proton beam, 2245 interactions have been observed. The measured total cross section is 39.0±1.0 mb and the average charged particle multiplicity 〈nch〉=8.86±0.16.
TOPOLOGICAL CROSS SECTIONS.
We have measured the differential cross section for small angle p−p scattering from 25 to 200 GeV incident energy and in the momentum transfer range 0.015<|t|<0.080 (GeVc)2. We find that the slope of the forward diffraction peak, b(s), increases with energy and can be fitted by the form b(s)=b0+2α′ lns, where b0=8.3±1.3 and α′=0.28±0.13 (GeVc)−2. Such dependence is compatible with the data existing both at higher and lower energies. We have also obtained the energy dependence of the p−p total cross section in the energy range from 48 to 196 GeV. Within our errors which are ± 1.1 mb the total cross section remains constant.
No description provided.
THE TOTAL CROSS SECTION IS NORMALIZED TO 38.5 +- 0.1 MB AT 48 GEV. IT HAS BEEN DERIVED USING THE OPTICAL THEOREM FROM THE EXTRAPOLATED FORWARD ELASTIC CROSS SECTION AND WITH ALPHA = -0.09.
From 2728 events of 205-GeV pp interactions found in 15 000 pictures taken with the 30-in. hydrogen bubble chamber at the National Accelerator Laboratory, a total cross section of 39.5±1.1 mb was measured. The mean charged-particle multiplicity for inelastic pp collisions was measured to be 7.65±0.17. The prong distribution from 2 to 22 prongs is broader than a Poisson distribution and has a width parameter f2−=〈n−(n−−1)〉−〈n−〉2=0.95±0.21.
No description provided.
From a 3.5 ev/μb exposure of the BNL 80 inch chamber filled with deuterium to a 7.0 GeV/ c p beam we obtained 664 events in the channel p n → p π − p . The channel cross section is (1270 ± 110 60 ) μb. The final state is dominated by Δ (1230) production. The experimental data is well described by a one-pion exchange model with off-mass shell corrections.
No description provided.
The reaction K − d → K − π + π − n p s was studied in a bubble chamber experiment. The cross section was measured to be 1.3 ± 0.2 mb. The final state is dominated by K ∗0 (890) , K ∗0 (1420) and Δ − (1236) production. Partial cross sections, differential cross sections and decay angular distributions of the K ∗0 (890) δ − (1236) final state were found to give good agreement with the predictions of Białas and Zalewski obtained from the quark model. The final state K − π + Δ − (1236) is analyzed by use of the Van Hove plot.
DEUTERIUM CROSS SECTIONS WITH SPECTATOR PROTON. PROBABLY NOT CORRECTED FOR K* BRANCHING RATIO INTO <K- PI+>.
SLOPE IS 5.75 +- 0.46 GEV**2 FOR -TP < 0.4 GEV**2.
GOTTFRIED-JACKSON FRAME.
We present results on the differential cross sections for the process K + n → K 0 p extracted from the reaction K + d → K 0 pp measured at 13 momenta between 0.64 and 1.51 GeV/ c .
THESE TOTAL CROSS SECTIONS WERE PRESENTED WITH MORE EXPERIMENTAL DETAILS IN G. GIACOMELLI ET AL., NP B37, 577 (1972).
REACTION HAS A SPECTATOR PROTON. THESE ARE NOT FREE NEUTRON CROSS SECTIONS. A 250 MEV/C MOMENTUM CUT IS APPLIED TO THE SPECTATOR MOMENTUM AND D(SIG)/DOMEGA THEN NORMALIZED TO THE UNCUT TOTAL CROSS SECTION FOR K+ DEUT --> K0 P P.
The reaction pn → pp π − at 7.0 GeV/ c is studied in a pd experiment. Observations on isobar production and low-mass enhancement are reported. The I = 1 2 isobars and the low-mass enhancement produced at the neutron vertex are discussed in terms of the diffraction dissociation plus duality model.
PART OF THE DIFFERENCE BETWEEN DEL PRODUCTION AT THE NEUTRON AND AT THE PROTON VERTICES COULD ARISE FROM DEUTERON EFFECTS.
Lambda production is studied in K − p interactions at 10.1 GeV/ c , where the dominant reaction is K − p → Λ + pions. General characteristics such as the distributions of the double differential cross section in the lab system, of the variable x = p L ∗ p max ∗ , of p ⊥ 2 and of the missing mass to the lambda are presented. Total cross sections for Λ production and for the various channels are given. Differential cross sections d σ d t , d σ d t′ and d σ d u′ are presented. Forward and backward peaks are observed in the d σ d t′ and d σ d u′ distributions, respectively. It is found that the exponential slope of these distributions decreases with increasing missing mass to the lambda and, for d σ d t′ , also for increasing multiplicity in the final state. The polarization of the lambdas is studied as a function of multiplicity, p L ∗ , (Λπ ± ) effective mass, t ′ and u ′. The forward lambdas show
No description provided.
POSSIBLE FORWARD DIP.