The photoproduction of eta mesons at small angles

Booth, P.S.L. ; Barton, J.S. ; Carroll, L.J. ; et al.
Nucl.Phys.B 25 (1971) 510-518, 1971.
Inspire Record 68819 DOI 10.17182/hepdata.33806

None

4 data tables

No description provided.

No description provided.

No description provided.

More…

Measurements of the electric and magnetic form-factors of the proton from Q**2 = 1.75-GeV/c**2 to 8.83-GeV/c**2

Bosted, Peter E. ; Clogher, L. ; Lung, A. ; et al.
Phys.Rev.Lett. 68 (1992) 3841-3844, 1992.
Inspire Record 332962 DOI 10.17182/hepdata.19849

The proton elastic electric and magnetic form factors, GEp(Q2) and GMp(Q2), have been separately measured in the range Q2=1.75 to 8.83 (GeV/c)2, more than doubling the Q2 range of previous data. Scaled by the dipole fit, GD(Q2), the results for GMp(Q2)/μpGD(Q2) decrease smoothly from 1.05 to 0.91, while GEp(Q2)/GD(Q2) is consistent with unity. Comparisons are made to QCD sum rule, diquark, constitutent quark, and vector meson dominance models, none of which agree with all of the new data. The ratio Q2F2/F1 approaches a constant value for Q2>3 (GeV/c)2.

2 data tables

Magnetic form factors.

Electric form factors.


Measurements of the electric and magnetic form-factors of the neutron from Q**2 = 1.75-GeV/c**2 to 4-GeV/c**2

Lung, A. ; Stuart, L.M. ; Bosted, Peter E. ; et al.
Phys.Rev.Lett. 70 (1993) 718-721, 1993.
Inspire Record 342252 DOI 10.17182/hepdata.19739

Quasielastic e-d cross sections have been measured at forward and backward angles. Rosenbluth separations were done to obtain RL and RT at Q2=1.75, 2.50, 3.25, and 4.00 (GeV/c)2. The neutron form factors GEn and GMn have been extracted using a nonrelativistic model. The sensitivity to deuteron wave function, relativistic corrections, and models of the inelastic background are reported. The results for GMn are consistent with the dipole form, while GEn is consistent with zero. Comparisons are made to theoretical models based on vector meson dominance, perturbative QCD, and QCD sum rules, as well as constituent quarks.

2 data tables

Magnetic form factors.

Electric form factors.


Measurements of the electric and magnetic form-factors of the proton from Q**2 = 1.75-GeV/c**2 to 8.83-GeV/c**2

Andivahis, L. ; Bosted, Peter E. ; Lung, A. ; et al.
Phys.Rev.D 50 (1994) 5491-5517, 1994.
Inspire Record 372566 DOI 10.17182/hepdata.22354

The proton elastic form factors GEp(Q2) and GMp(Q2) have been extracted for Q2=1.75 to 8.83 (GeV/c)2 via a Rosenbluth separation to ep elastic cross section measurements in the angular range 13°≤θ≤90°. The Q2 range covered more than doubles that of the existing data. For Q2<4 (GeV/c)2, where the data overlap with previous measurements, the total uncertainties have been reduced to < 14% in GEp and < 1.5% in GMp. Results for GEp(Q2) are consistent with the dipole fit GD(Q2)=(1+Q2/0.71)−2, while those for GMp(Q2)/μpGD(Q2) decrease smoothly from 1.05 to 0.92. Deviations from form factor scaling are observed up to 20%. The ratio Q2F2/F1 is observed to approach a constant value for Q2>3 (GeV/c)2. Comparisons are made to vector meson dominance, dimensional scaling, QCD sum rule, diquark, and constituent quark models, none of which fully characterize all the new data.

8 data tables

Axis error includes +- 1.6/1.6 contribution (Point-to-point systematic error. The quadrature sum of the point-to-point uncertainties in all quantities which defined the cross section).

Axis error includes +- 1.6/1.6 contribution (Point-to-point systematic error. The quadrature sum of the point-to-point uncertainties in all quantities which defined the cross section).

Axis error includes +- 1.6/1.6 contribution (Point-to-point systematic error. The quadrature sum of the point-to-point uncertainties in all quantities which defined the cross section).

More…

Measurements of the Q**2 dependence of the proton and deuteron spin structure functions g1(p) and g1(d)

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Lett.B 364 (1995) 61-68, 1995.
Inspire Record 401107 DOI 10.17182/hepdata.28431

The ratio g1/F1 has been measured over the range 0.03<x<0.6 and 0.3<Q2<10 (GeV/c)2 using deep-inelastic scattering of polarized electrons from polarized protons and deuterons. We find g1/F1 to be consistent with no Q2-dependence at fixed x in the deep-inelastic region Q~2>1 (GeV/c)2. A trend is observed for g1/F1 to decrease at lower Q2. Fits to world data with and without a possible Q2-dependence in g1/F1 are in agreement with the Bjorken sum rule, but Delta_q is substantially less than the quark-parton model expectation.

16 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the proton and deuteron spin structure function g1 in the resonance region.

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Rev.Lett. 78 (1997) 815-819, 1997.
Inspire Record 426735 DOI 10.17182/hepdata.19582

We have measured the proton and deuteron spin structure functions g_1^p and g_1^d in the region of the nucleon resonances for W^2 &lt; 5 GeV^2 and $Q^2\simeq 0.5$ and $Q^2\simeq 1.2$ GeV^2 by inelastically scattering 9.7 GeV polarized electrons off polarized $^{15}NH_3$ and $^{15}ND_3$ targets. We observe significant structure in g_1^p in the resonance region. We have used the present results, together with the deep-inelastic data at higher W^2, to extract $\Gamma(Q^2)\equiv\int_0^1 g_1(x,Q^2) dx$. This is the first information on the low-Q^2 evolution of Gamma toward the Gerasimov-Drell-Hearn limit at Q^2 = 0.

8 data tables

The integral of the structure functions g1 for the resonance region W**2 < 4 GeV**2.

The integral of the structure functions g1 for the resonance region W**2 < 4 GeV**2.

The integral of the structure functions g1 for the full W region including the deep-inelastic region as given by fits to the world's data.

More…

Measurements of the proton and deuteron spin structure functions g1 and g2.

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Rev.D 58 (1998) 112003, 1998.
Inspire Record 467140 DOI 10.17182/hepdata.22265

Measurements are reported of the proton and deuteron spin structure functions g1 at beam energies of 29.1, 16.2, and 9.7 GeV and g2 at a beam energy of 29.1 GeV. The integrals of g1 over x have been evaluated at fixed Q**2 = 3 (GeV/c)**2 using the full data set. The Q**2 dependence of the ratio g1/F1 was studied and found to be small for Q**2 > 1 (GeV/c)**2. Within experimental precision the g2 data are well-described by the Wandzura-Wilczek twist-2 contribution. Twist-3 matrix elements were extracted and compared to theoretical predictions. The asymmetry A2 was measured and found to be significantly smaller than the positivity limit for both proton and deuteron targets. A2 for the proton is found to be positive and inconsistent with zero. Measurements of g1 in the resonance region show strong variations with x and Q**2, consistent with resonant amplitudes extracted from unpolarized data. These data allow us to study the Q**2 dependence of the first moments of g1 below the scaling region.

33 data tables

Averaged A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.

Detailed A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.

Detailed A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.

More…

Measurement of the neutral weak form factors of the proton.

The HAPPEX collaboration Aniol, K.A. ; Armstrong, D.S. ; Baylac, M. ; et al.
Phys.Rev.Lett. 82 (1999) 1096-1100, 1999.
Inspire Record 478059 DOI 10.17182/hepdata.31319

We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from the proton. The kinematic point (theta_lab = 12.3 degrees and Q^2=0.48 (GeV/c)^2) is chosen to provide sensitivity, at a level that is of theoretical interest, to the strange electric form factor G_E^s. The result, A=-14.5 +- 2.2 ppm, is consistent with the electroweak Standard Model and no additional contributions from strange quarks. In particular, the measurement implies G_E^s + 0.39G_M^s = 0.023 +- 0.034 (stat) +- 0.022 (syst) +- 0.026 (delta G_E^n), where the last uncertainty arises from the estimated uncertainty in the neutron electric form factor.

1 data table

Longitudinally polarized beam. C=L and C=R means left- and right polarization. The second systematic uncertainty arises from the estimated uncertainty inthe neutron electromagnetic from factor.


Exclusive electroproduction of Phi mesons at 4.2-GeV.

The CLAS collaboration Lukashin, K. ; Smith, E.S. ; Adams, G.S. ; et al.
Phys.Rev.C 64 (2001) 059901, 2001.
Inspire Record 552246 DOI 10.17182/hepdata.38589

We studied the exclusive reaction e p --> e' p' phi using the phi --> K^+ K^- decay mode. The data were collected using a 4.2 GeV incident electron beam and the CLAS detector at Jefferson Lab. Our experiment covers the range in Q^2 from 0.7 to 2.2 GeV^2, and W from 2.0 to 2.6 GeV. Taken together with all previous data, we find a consistent picture of phi production on the proton. Our measurement shows the expected decrease of the t-slope with the vector meson formation time c Delta tau below 2 fm. At = 0.6 fm, we measure b_phi = 2.27 +- 0.42 GeV^-2. The cross section dependence on W as W^{0.2+-0.1} at Q^2 = 1.3 GeV^2 was determined by comparison with phi production at HERA after correcting for threshold effects. This is the same dependence as observed in photoproduction.

3 data tables

Slope of the DSIG/DT distribution in different Q**2 regions.

Cross section as a function of Q**2 and W.

The differential cross section for exclusive PHI electroproduction off the photon, (TP=T-TMIN).


Measurement of e p --> e' p pi+ pi- and baryon resonance analysis.

The CLAS collaboration Ripani, M. ; Burkert, V.D. ; Mokeev, V. ; et al.
Phys.Rev.Lett. 91 (2003) 022002, 2003.
Inspire Record 600451 DOI 10.17182/hepdata.11116

The cross section for the reaction $ e p \to e^{\prime} p \pi^{+} \pi^{-}$ was measured in the resonance region for 1.4$<$W$<$2.1 GeV and 0.5$<Q^{2}<$1.5 GeV$^{2}$/c$^{2}$ using the CLAS detector at Jefferson Laboratory. The data shows resonant structures not visible in previous experiments. The comparison of our data to a phenomenological prediction using available information on $N^{*}$ and $\Delta$ states shows an evident discrepancy. A better description of the data is obtained either by a sizeable change of the properties of the $P_{13}$(1720) resonance or by introducing a new baryon state, not reported in published analyses.

84 data tables

Measured cross section DSIG/DM(PI+PI-) for the W range 1400 to 1425GeV.

Measured cross section DSIG/DM(PI+PI-) for the W range 1425 to 1450GeV.

Measured cross section DSIG/DM(PI+PI-) for the W range 1450 to 1475GeV.

More…