The transverse single-spin asymmetries of neutral pions and non-identified charged hadrons have been measured at mid-rapidity in polarized proton-proton collisions at sqrt(s) = 200 GeV. The data cover a transverse momentum (p_T) range 0.5-5.0 GeV/c for charged hadrons and 1.0-5.0 GeV/c for neutral pions, at a Feynman-x (x_F) value of approximately zero. The asymmetries seen in this previously unexplored kinematic region are consistent with zero within statistical errors of a few percent. In addition, the inclusive charged hadron cross section at mid-rapidity from 0.5 < p_T < 7.0 GeV/c is presented and compared to NLO pQCD calculations. Successful description of the unpolarized cross section above ~2 GeV/c using NLO pQCD suggests that pQCD is applicable in the interpretation of the asymmetry results in the relevant kinematic range.
Invariant cross section vs. $p_T$ for the production of charged hadrons at mid-rapidity.
Mid-rapidity neutral pion transverse single-spin asymmetry, $A_N$, vs. transverse momentum.
Mid-rapidity charged hadron transverse single-spin asymmetry, $A_N$, vs. transverse momentum.
The transverse momentum dependence of the azimuthal anisotropy parameter v_2, the second harmonic of the azimuthal distribution, for electrons at mid-rapidity (|eta| < 0.35) has been measured with the PHENIX detector in Au+Au collisions at sqrt(s_NN) = 200 GeV. The measurement was made with respect to the reaction plane defined at high rapidities (|eta| = 3.1 -- 3.9). From the result we have measured the v_2 of electrons from heavy flavor decay after subtraction of the v_2 of electrons from other sources such as photon conversions and Dalitz decay from light neutral mesons. We observe a non-zero single electron v_2 with a 90% confidence level in the intermediate p_T region.
Transverse momentum dependence of inclusive electron $v_2$ and heavy quark electron $v_2$.
A measurement of direct photons in p+p collisions at sqrt(s)=200 GeV is presented. A photon excess above background from pi^0 --> gamma+gamma, eta --> gamma+gamma, and other decays is observed in the transverse momentum range 5.5 < p_T < 7 GeV/c. The result is compared to a next-to-leading-order perturbative QCD calculation. Within errors, good agreement is found between the QCD calculation and the measured result.
<p>Measured cross section and NLO pQCD calculations for direct-photon production in p+p collisions at $\sqrt{s}=$200 GeV. The normalization error of 9.6% is not shown. The two data points plotted with an arrow indicate the beginning of the low- and high-$p_\mathrm{T}$ ranges where the direct photon signal is consistent with zero. The upper edges of the arrows indicate an upper limit (90% confidence level) for the direct photon cross section calculated from the statistical and systematic uncertainty.</p>
New measurements are presented for charged hadron azimuthal correlations at mid-rapidity in Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV. They are compared to earlier measurements obtained at sqrt(s_NN) = 130 GeV and in Pb+Pb collisions at sqrt(s_NN) = 17.2 GeV. Sizeable anisotropies are observed with centrality and transverse momentum (p_T) dependence characteristic of elliptic flow (v_2). For a broad range of centralities, the observed magnitudes and trends of the differential anisotropy, v_2(p_T), change very little over the collision energy range sqrt(s_NN) = 62-200 GeV, indicating saturation of the excitation function for v_2 at these energies. Such a saturation may be indicative of the dominance of a very soft equation of state for sqrt(s_NN) = 62-200 GeV.
Assorted-$p_T$ correlation functions (0.65 < $p_{T,ref}$ < 2.5 GeV/$c$) for charged hadrons of 0.5 < $p_T$ < 0.7 GeV/$c$ and 1.0 < $p_T$ < 1.5 obtained in Au+Au collisions at $\sqrt{S_{NN}}$ = 62.4 GeV.
Differential anisotropy $v_2$($p_T$) for charged hadrons in Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV obtained via cumulants method
Differential anisotropy $v_2$($p_T$) for charged hadrons in Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV obtained via correlation function method
Two particle correlations between identified meson and baryon trigger particles with 2.5 < p_T < 4.0 GeV/c and lower p_T charged hadrons have been measured at midrapidity by the PHENIX experiment at RHIC in p+p, d+Au and Au+Au collisions at sqrt(s_NN) = 200 GeV. The probability of finding a hadron near in azimuthal angle to the trigger particle is almost identical for leading mesons and baryons for non-central Au+Au. The yield for both trigger baryons and mesons is significantly higher in Au+Au than in p+p and d+Au, except for trigger baryons in central collisions. The baryon excess is likely to arise predominantly from hard scattering processes.
$\Delta\phi$ distributions for meson and baryon triggers with 2.5 < $p_T$ < 4.0 GeV/$c$ and associated charged hadrons with 1.7 < $p_T$ < 2.5 GeV/$c$ for five centralities in Au+Au collisions.
$\Delta\phi$ distributions for meson triggers with 2.5 < $p_T$ < 4.0 GeV/$c$ and associated charged hadrons with 1.7 < $p_T$ < 2.5 GeV/$c$ in $d$+Au collisions.
$\Delta\phi$ distributions unidentified triggers with 2.5 < $p_T$ < 4.0 GeV/$c$ and associated charged hadrons with 1.7 < $p_T$ < 2.5 GeV/$c$ in $p$+$p$ collisions.
J/psi production has been measured in proton-proton collisions at sqrt(s)= 200 GeV over a wide rapidity and transverse momentum range by the PHENIX experiment at RHIC. Distributions of the rapidity and transverse momentum, along with measurements of the mean transverse momentum and total production cross section are presented and compared to available theoretical calculations. The total J/psi cross section is 3.99 +/- 0.61(stat) +/- 0.58(sys) +/- 0.40(abs) micro barns. The mean transverse momentum is 1.80 +/- 0.23(stat) +/- 0.16(sys) GeV/c.
Measured J/PSI distribution in PT for the e+e- channel. The value of B, the branching fraction to either electrons or muons is the average value from PDG : 5.9%.The rapidity range is -0.35<y<0.35. Incertainties are 1-sigma statistical errors on the (signal - background) net yield. There is a 10% overall absolute cross section normalization error in addition to the error given.
Measured J/PSI distribution in PT for the mu+mu- channel. The value of B, the branching fraction to either electrons or muons, is the average value from PDG: 5.9%.The rapidity range is -2.2<y<-1.2. Incertainties are 1-sigma statistical errors on the (signal - background) net yield.There is a 10% overall absolute cross section normalization error in addition to the error given.
J/PSI distribution in rapidity. The data at rapidity = 0 is from the electron arm, the data from the muon arm, corresponding to forward rapidity is divided in two bins.The value of B,the branching fraction to either electrons or muons, is 5.9%, the average value from PDG.Incertainties are 1-sigma statistical errors on the (signal - background) net yield.There is a 10% overall absolute cross section normalization error in addition to the error given.
The invariant differential cross section for inclusive neutral pion production in p+p collisions at sqrt(s_NN) = 200 GeV has been measured at mid-rapidity |eta| < 0.35 over the range 1 < p_T <~ 14 GeV/c by the PHENIX experiment at RHIC. Predictions of next-to-leading order perturbative QCD calculations are consistent with these measurements. The precision of our result is sufficient to differentiate between prevailing gluon-to-pion fragmentation functions.
The invariant differential cross section as a function of PT. The mean PT here is defined as the PT for which the cross section equals its average over thebin.
Transverse momentum spectra of neutral pions in the range 1 < p_T < 10 GeV/c have been measured at mid-rapidity by the PHENIX experiment at RHIC in Au+Au collisions at sqrt(s_NN) = 200 GeV. The pi^0 multiplicity in central reactions is significantly below the yields measured at the same sqrt(s_NN) in peripheral Au+Au and p+p reactions scaled by the number of nucleon-nucleon collisions. For the most central bin, the suppression factor is ~2.5 at p_T = 2 GeV/c and increases to ~4-5 at p_T ~= 4 GeV/c. At larger p_T, the suppression remains constant within errors. The deficit is already apparent in semi-peripheral reactions and increases smoothly with centrality.
Invariant $\pi^0$ yields at midrapidity as a function of $p_T$ for minimum bias and nine centralities in $Au\ +\ Au$ at $\sqrt{s_{NN}} = 200\ GeV$ [0%–10% (80%–92%) is most central (peripheral)]. The labels "uncorr." and "corr." include systematic errors that are uncorrelated and correlated point-to-point, respectively.
Invariant $\pi^0$ yields at midrapidity as a function of $p_T$ for minimum bias and nine centralities in $Au\ +\ Au$ at $\sqrt{s_{NN}} = 200\ GeV$ [0%–10% (80%–92%) is most central (peripheral)]. The labels "uncorr." and "corr." include systematic errors that are uncorrelated and correlated point-to-point, respectively.
Invariant $\pi^0$ yields at midrapidity as a function of $p_T$ for minimum bias and nine centralities in $Au\ +\ Au$ at $\sqrt{s_{NN}} = 200\ GeV$ [0%–10% (80%–92%) is most central (peripheral)]. The labels "uncorr." and "corr." include systematic errors that are uncorrelated and correlated point-to-point, respectively.