Analyses have been made for 871 four-prong events and 463 two-prong events corresponding to multiple pion production, resulting from p−p interactions at 2 Bev in the BNL 20-in. hydrogen bubble chamber. Cross sections have been obtained for all the observable double and triple pion production processes; the branching ratios predicted by the extended isobar model are shown to be in fair agreement with the data, but there are significant differences. The c.m. momentum distributions are also in fair agreement with the predictions of the model, although there are ambiguities in the interpretation. The pion-nucleon Q values give clear evidence for the importance of the (32, 32) resonant state in multiple pion production, but consideration of this state alone does not provide an explanation of the features of double pion production. Some contribution from another state, possibly the I=12 nucleon isobar, is necessary. In double production, the c.m. angular distributions of the nucleons show backward-forward peaking suggestive of a one-pion exchange process. The angular distributions of the nucleons from triple production are almost isotropic.
No description provided.
3600 two-pronged events, obtained in p−p interactions at 2 Bev in the BNL 20-in. hydrogen bubble chamber, have been analyzed. Cross sections have been measured for elastic scattering, for the two modes of single-pion production, p+p→p+n+π+, p+p→p+p+π0, and for strange-particle production. The branching ratio for the two one-pion production reactions is σ(pnπ+)σ(ppπ0)=4.17±0.25. Momentum distributions and Q values indicate that single-pion production proceeds almost entirely through the (32, 32) resonant state. The data have been considered in terms of the extended isobar model and also a one-pion exchange model for production. The branching ratio and momentum distributions can be explained by including a small effect from the I=12 resonant state in addition to the dominant I=32 resonance. The c.m. angular distribution of the nucleons in single-pion production shows very marked backward-forward peaking indicating a one-pion exchange mechanism. Absolute differential cross sections as a function of laboratory kinetic energy have been calculated from Selleri's equation for the pnπ+ reaction. There is good agreement with the data for low four-momentum transfers [q2<0.15(Bev/c)2], but for higher momentum transfers the theoretical cross sections are larger than the experimental cross sections.
No description provided.
Meson production in π−p and π+n interactions at 1.7 GeV/c has been studied in two bubble-chamber exposures. Combined results are presented with emphasis on single-pion production (4300 events) which is dominated by the formation of the ρ0 meson in peripheral interactions, and on double-pion production (1100 events) which shows strong formation of the ω meson. These data are compared with the predictions of particle-exchange models, including absorption, and the effects of competing channels are discussed. Evidence for a two-pion decay mode of the ω is examined quantitatively. Processes with higher meson multiplicities are described.
No description provided.
The total cross section of hadron photoproduction on C, Cu and Pb nuclei is measured for six energy values in the range 12–30 GeV. The obtained cross-section values for C and Cu nuclei have a weak energy dependence at high energies (above 20 GeV). The cross section for the Pb nucleus is somewhat higher in comparison with that expected, and energy dependence is not observed. The A -dependence of the effective number of hadrons agrees with VDM predictions.
No description provided.
A-EFFECTIVE/A = SIG(GAMMA A)/(Z*SIG(GAMMA P) + (A-Z)*SIG(GAMMA N)) WHERE SIG(GAMMA P) = (98.7 +- 3.6) + (65 +- 10)/SQRT(P) MUB, SIG(GAMMA N) = SIG(GAMMA P) - (18.3 +- 6.1)/SQRT(P) MUB AND A IS 12, 64 AND 207 FOR THESE NUCLEI.
None
No description provided.
No description provided.
None
Axis error includes +- 0.0/0.0 contribution (?////NOT GIVEN).
Axis error includes +- 0.0/0.0 contribution (?////NOT GIVEN).
None
No description provided.
The cross sections of inelastic interaction of 22Ne with C, Al, Cu and Pb targets have been measured at an incident momentum of 4.1 GeV/c per nucleon. The following results have been obtained: 1060 +- 50 mb; 1520 +- 70 mb; 2150 +- 100 mb and 3900 +- 200 mb, respectively. The approximation of the dependence of the cross sections on the mass numbers of interacting nuclei and the measurement procedure are presented
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.