Data are presented on exclusive ρ0 and ϕ production in deep inelastic muon scattering from a target consisting mainly of nitrogen. The ratio of the total cross sections for ρ0 and ϕ production is found to be 9∶(1.6±0.4) at 〈Q2〉=7.5 GeV2, consistent with theSU(3) prediction of 9∶2. Thet dependence for exclusive ρ0 production is found to become shallover asQ2 increases and, for largeQ2, thet dependence is typical of that for a hard scattering process. Furthermore, the ratio of the cross sections for coherent: incoherent production from nitrogen is found to decrease rapidly withQ2. Such behaviour indicates that even for exclusive vector meson production the virtual photon behaves predominantly as an electromagnetic probe.
No description provided.
No description provided.
No description provided.
New measurements of the total crosssections of charged-current interactions of muonneutrinos and antineutrinos on isoscalar nuclei have been performed. Data were recorded in an exposure of the CHARM d
No description provided.
No description provided.
We have measured the cross section of four charged pion production in photon-photon interactions in the invariant mass range 1.0≦Wγγ≦3.2 GeV and up toQ2=16 GeV2. For 1.2 GeV≦Wγγ≦1.7 GeV the process is dominated by ρ0ρ0 production with a rapid rise in cross section around 1.2 GeV, well below the nominal ρ0ρ0 threshold. The observed distributions in the two particle masses and in the production and decay angles are well described by an incoherent sum of the phase-space subprocesses γγ →ρ0ρ0, →ρ0π+π−, and →π+π−π+π−. A spin-parity analysis of the ρ0ρ0 system showsJP=2+ to dominate, although 0+ is also possible forWγγ≦1.4 GeV. Negative partity states are excluded.
Fractions of subprocesses from 3-parameter fit to the no-tag data.
Fractions of subprocesses from 2-parameter fit to the no-tag data in limited energy range. The Q=1R contribution is set equal to zero.
Fractions of subprocesses from 3-parameter fit to the single-tag data.
This paper analyzes π−N→π−π−π+N events from Fermilab experiment E-580, using 200-GeV/c particles on a segmented target of plastic scintillator. Starting with 48 657 triggers, data-quality cuts and a cut on missing mass squared of M2<16 GeV2 lead to a final sample of 7205 events. The xF distribution of the 3π system shows almost all events in a sharp peak at xF=1, suggesting the presence of beam diffraction into three pions. The overall t’ distribution is fit to the sum of three exponential terms corresponding to coherent diffraction from carbon nuclei, diffraction from individual nucleons, and background. Cross sections per nucleon and exponential slopes are reported for each of the three components as a function of 3π effective mass. The cross section for diffraction from the nucleons in the target is 0.34±0.04 mb/nucleon. The cross section for coherent diffraction from carbon is 1.08±0.12 mb/nucleus. The exponential slope for diffraction is observed to decrease with increasing 3π effective mass. The fraction of coherent carbon diffraction in the total cross section is observed to decrease with increasing 3π effective mass. In the π−π+ effective-mass spectrum the ρ0(770) and f0(1270) are observed and their cross sections per nucleon are calculated. In the π−π−π+ effective-mass spectrum the A1−/A2− and A3− enhancements are observed and a cross section for the A3− is calculated.
No description provided.
No description provided.
Diffraction from coherent carbon nucleus.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
Using the ARGUS detector at DORIS, we observe the production of D ∗+ s mesons in e + e − annihilation through their subsequent decays to a D + s and a photon. Photons which convert in the beam pipe or drift chamber inner wall are used to obtain a high precision measurement of the D ∗+ s -D + s mass difference, while photons detected in the shower counters are used to determine the production cross section, and to provide an independent measurement of the D ∗+ s -D + s mass difference. The observed D ∗+ s - D + s mass difference is 142.5±0.8±1.5 MeV/ c 2 , and σ(e + e − →D ∗+ s X)·BR(D ∗+ s →D + s γ)(·BR(D + s →φπ + ) is 4.4±1.1±1.0 pb at 10.2 GeV. The width of the D ∗+ s is less than 4.5 MeV/ c 2 at 90% confidence level.
Cross sections uncorrected for branching ratios.
The reactions e + e − → μ + μ − and τ + τ − were measured at s =52 GeV and 55 GeV by using the TOPAZ detector at TRISTAN. For the combined data, the observed charge asymmetry is −0.29±0.13 and the total cross section is 27.9±3.0 (stat.)±0.8 (syst.) pb for μ + μ − production, and those for τ + τ − production are −0.20±0.14 and 35.7±4.3 (stat.)±2.4 (syst.)pb, respectively. These values are consistent with predictions by the standard model of electroweak interactions.
.
.
.
The production of the Jψ resonance in 125-GeV/c p¯ and φ− interactions with Be, Cu, and W targets has been measured. The cross section per nucleon for Jψ production is suppressed in W interactions relative to the lighter targets, especially at large values of Feynman x, which is opposite to the expectation from the various explanations of the European Muon Collaboration effect. Models incorporating modifications of the gluon structure functions in heavy targets show qualitative agreement with the data.
No description provided.
No description provided.
No description provided.
Cross sections are measured for 16 O collisions with A1 and Pb. Dependences on beam momentum and atomic number are compared with data obtained at much lower beam momenta.
MODEL DEPENDENT ESTIMATION.
No description provided.
No description provided.