Date

Characterizing the initial state and dynamical evolution in XeXe and PbPb collisions using multiparticle cumulants

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-HIN-24-004, 2025.
Inspire Record 3075174 DOI 10.17182/hepdata.161536

For the first time, correlations among mixed-order moments of two or three flow harmonics $-$($v_{n}^{k},v_{m}^{l}$) and ($v_{n}^{k},v_{m}^{l}, v_{p}^{q}$), with $k$, $l$, and $q$ denoting the respective orders$-$are measured in xenon-xenon (XeXe) collisions and compared with lead-lead (PbPb) results, providing a novel probe of collective behavior in heavy ion collisions. These measurements compare a nearly spherical, doubly-magic ${}^{208}$Pb nucleus to a triaxially deformed ${}^{129}$Xe nucleus, emphasizing the sensitivity to dynamic nuclear deformation. The dependence of these results ($v_{n}$, $n$ = 2, 3, 4) on the shape and size of the nuclear overlap region is studied. Comparisons between $v_{2}$, $v_{3}$, and $v_{4}$ demonstrate the importance of $v_{3}$ and $v_{4}$ in exploring the nonlinear hydrodynamic response of the quark-gluon plasma (QGP) to the initial spatial anisotropy. The results constrain initial-state model parameters that influence the evolution of the QGP. The CMS detector was used to collect XeXe and PbPb data at nucleon-nucleon center-of-mass energies of $\sqrt{s_\mathrm{NN}}$ = 5.44 and 5.36 TeV, respectively. Correlations are extracted using multiparticle mixed-harmonic cumulants (up to eight-particle cumulants) with charged particles in the pseudorapidity range $\lvertη\rvert$$\lt$ 2.4 and transverse momentum range 0.5 $\lt$$p_\mathrm{T}$$\lt$ 3 GeV/$c$.

25 data tables

Two-particle correlations v_{2}{2} as a function of centrality in XeXe and PbPb collisions and ratios of XeXe/PbPb.

Two-particle correlations v_{3}{2} as a function of centrality in XeXe and PbPb collisions and ratios of XeXe/PbPb.

v_{2}{4}/v_{2}{2} as a function of centrality in XeXe and PbPb collisions and ratios of XeXe/PbPb.

More…

Measurement of D$^0$ meson photoproduction in ultraperipheral heavy ion collisions

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
CMS-HIN-24-003, 2025.
Inspire Record 2968597 DOI 10.17182/hepdata.156822

This Letter reports the first measurement of photonuclear D$^0$ meson production in ultraperipheral heavy ion collisions. The study is performed using lead-lead collision data, with an integrated luminosity of 1.38 nb$^{-1}$, collected by the CMS experiment at a nucleon-nucleon center-of-mass energy of 5.36 TeV. Photonuclear events, where one of the colliding nuclei breaks up and the other remains intact, are selected based on breakup neutron emissions and by requiring no particle activity in a large rapidity interval in the direction of the photon-emitting nucleus. The D$^0$ mesons are reconstructed via the D$^0$$\to$ K$^-$$π^+$ decay channel, with the cross section measured as a function of D$^0$ meson transverse momentum and rapidity. The results are compared with next-to-leading-order perturbative QCD calculations that employ recent parametrizations of the lead nuclear parton distribution functions, as well as with predictions based on the color glass condensate framework. This measurement is the first photonuclear collision study characterizing parton distribution functions of lead nuclei for parton fractional momenta $x$ (relative to the nucleon) ranging approximately from a few 10$^{-4}$ to 10$^{-2}$ for different hard energy scale $Q^2$ selections.

4 data tables

The mass distribution of D$^{0}$ decaying to K$^{-}$ and $\pi^{+}$ for $5 < p_{\mathrm{T}} < 8$ GeV and $0.0 < y < 1.0$ in 0nXn ultraperipheral PbPb collisions.

The d$^{2}\sigma$/dydp$_{\mathrm{T}}$ production cross section of D$^{0}$ for $2 < p_{\mathrm{T}} < 5$ GeV in ultraperipheral PbPb collisions.

The d$^{2}\sigma$/dydp$_{\mathrm{T}}$ production cross section of D$^{0}$ for $5 < p_{\mathrm{T}} < 8$ GeV in ultraperipheral PbPb collisions.

More…

Observation of coherent $\phi$(1020) meson photoproduction in ultraperipheral PbPb collisions at $\sqrt{s_\text{NN}}$ = 5.36 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
CMS-HIN-24-009, 2025.
Inspire Record 2908607 DOI 10.17182/hepdata.156183

The first observation of coherent $\phi$(1020) meson photoproduction off heavy nuclei is presented using ultraperipheral lead-lead collisions at a center-of-mass energy per nucleon pair of 5.36 TeV. The data were collected by the CMS experiment and correspond to an integrated luminosity of 1.68 $\mu$b$^{-1}$. The $\phi$(1020) meson signals are reconstructed via the K$^+$K$^-$ decay channel. The production cross section is presented as a function of the $\phi$(1020) meson rapidity in the range 0.3 $\lt$$\lvert y\rvert$$\lt$ 1.0, probing gluons that carry a fraction of the nucleon momentum ($x$) around $10^{-4}$. The observed cross section exhibits little dependence on rapidity and is significantly suppressed, by a factor of ${\sim}$5, compared to a baseline model that treats a nucleus as a collection of free nucleons. Theoretical models that incorporate either nuclear shadowing or gluon saturation predict suppression of the $\phi$(1020) meson cross section with only a small dependence on rapidity, but the magnitude of the predicted suppression varies greatly. Models considering only nuclear shadowing effects result in the best agreement with the experimental data. This study establishes a powerful new tool for exploring nuclear effects and nuclear gluonic structure in the small-$x$ regime at a unique energy scale bridging the perturbative and nonperturbative quantum chromodynamics domains.

1 data table

The differential coherent $\phi$ photoproduction cross section and the nuclear suppression factor as a function of rapidity.


Pseudorapidity distributions of charged hadrons in lead-lead collisions at $\sqrt{s_\mathrm{NN}}$ = 5.36 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 861 (2025) 139279, 2025.
Inspire Record 2825521 DOI 10.17182/hepdata.153190

The pseudorapidity ($\eta$) distributions of charged hadrons are measured using data collected at the highest ever nucleon-nucleon center-of-mass energy of $\sqrt{s_\mathrm{NN}}$ = 5.36 TeV for collisions of lead-lead ions. The data were recorded by the CMS experiment at the LHC in 2022 and correspond to an integrated luminosity of 0.30 $\pm$ 0.03 $\mu$b$^{-1}$. Using the CMS silicon pixel detector, the yields of primary charged hadrons produced in the range $\vert\eta\vert$$\lt$ 2.6 are reported. The evolution of the midrapidity particle density as a function of collision centrality is also reported. In the 5% most central collisions, the charged-hadron $\eta$ density in the range $\vert\eta\vert$ $\lt$ 0.5 is found to be 2032 $\pm$ 91 (syst), with negligible statistical uncertainty. This result is consistent with an extrapolation from nucleus-nucleus collision data at lower center-of-mass energies. Comparisons are made to various Monte Carlo event generators and to previous measurements of lead-lead and xenon-xenon collisions at similar collision energies. These new data detail the dependence of particle production on the collision energy, initial collision geometry, and the size of the colliding nuclei.

5 data tables

Charged-hadron $\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta$ distributions in PbPb collisions at 5.36 TeV for events in the 0--80%, 0--5% and 50--55% centrality class.

Charged-hadron $\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta$ in PbPb collisions at 5.36 TeV at midrapidity as a function of event centrality.

Charged-hadron $\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta/2A$ in PbPb collisions at 5.36 TeV at midrapidity as a function of event centrality.

More…

Search for magnetic monopole pair production in ultraperipheral Pb+Pb collisions at $\sqrt{s_{_\textrm{NN}}}=5.36$ TeV with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.Lett. 134 (2025) 061803, 2025.
Inspire Record 2819870 DOI 10.17182/hepdata.153408

This Letter presents a search for highly ionizing magnetic monopoles in 262$~\mu$b$^{-1}$ of ultraperipheral Pb+Pb collision data at $\sqrt{s_{_\textrm{NN}}}=5.36$ TeV collected by the ATLAS detector at the LHC. A new methodology that exploits the properties of clusters of hits reconstructed in the innermost silicon detector layers is introduced to study highly ionizing particles in heavy-ion data. No significant excess above the background, which is estimated using a data-driven technique, is observed. Using a nonperturbative semiclassical model, upper limits at 95% confidence level are set on the cross-section for pair production of monopoles with a single Dirac magnetic charge in the mass range of 20-150 GeV. The search significantly improves on the previous cross-section limits for production of low-mass monopoles in ultraperipheral Pb+Pb collisions.

1 data table

Expected and observed cross-section upper limits computed using the CL$_{s}$ method for $|q_{m}| = 1 g_{\textrm{D}}$ and assuming FPA model


Correlations between flow and transverse momentum in Xe+Xe and Pb+Pb collisions at the LHC with the ATLAS detector: a probe of the heavy-ion initial state and nuclear deformation

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Phys.Rev.C 107 (2023) 054910, 2023.
Inspire Record 2075412 DOI 10.17182/hepdata.139082

The correlations between flow harmonics $v_n$ for $n=2$, 3 and 4 and mean transverse momentum $[p_\mathrm{T}]$ in $^{129}$Xe+$^{129}$Xe and $^{208}$Pb+$^{208}$Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.44$ TeV and 5.02 TeV, respectively, are measured using charged particles with the ATLAS detector. The correlations are sensitive to the shape and size of the initial geometry, nuclear deformation, and initial momentum anisotropy. The effects from non-flow and centrality fluctuations are minimized, respectively, via a subevent cumulant method and event activity selection based on particle production in the very forward rapidity. The results show strong dependences on centrality, harmonic number $n$, $p_{\mathrm{T}}$ and pseudorapidity range. Current models describe qualitatively the overall centrality- and system-dependent trends but fail to quantitatively reproduce all the data. In the central collisions, where models generally show good agreement, the $v_2$-$[p_\mathrm{T}]$ correlations are sensitive to the triaxiality of the quadruple deformation. The comparison of model to the Pb+Pb and Xe+Xe data suggests that the $^{129}$Xe nucleus is a highly deformed triaxial ellipsoid that is neither a prolate nor an oblate shape. This provides strong evidence for a triaxial deformation of $^{129}$Xe nucleus using high-energy heavy-ion collision.

445 data tables

$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality

$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality

$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality

More…

Proton-Proton Interactions and Onset of Deconfinement

The NA61/SHINE collaboration Aduszkiewicz, A. ; Andronov, E.V. ; Anticic, T. ; et al.
Phys.Rev.C 102 (2020) 011901, 2020.
Inspire Record 1772241 DOI 10.17182/hepdata.95182

The NA61/SHINE experiment at the CERN SPS is performing a uniqe study of the phase diagram of strongly interacting matter by varying collision energy and nuclear mass number of colliding nuclei. In central Pb+Pb collisions the NA49 experiment found structures in the energy dependence of several observables in the CERN SPS energy range that had been predicted for the transition to a deconfined phase. New measurements of NA61/SHINE find intriguing similarities in p+p interactions for which no deconfinement transition is expected at SPS energies. Possible implications will be discussed.

12 data tables

K+/PI+ at y=0.

K+/PI+ at y=0.

<K+>/<PI+>.

More…

Anisotropic flow in Xe-Xe collisions at $\mathbf{\sqrt{s_{\rm{NN}}} = 5.44}$ TeV

The ALICE collaboration Acharya, S. ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Phys.Lett.B 784 (2018) 82-95, 2018.
Inspire Record 1671792 DOI 10.17182/hepdata.84283

The first measurements of anisotropic flow coefficients $v_{\rm{n}}$ for mid-rapidity charged particles in Xe-Xe collisions at $\sqrt{s_{\rm{NN}}} = 5.44$ TeV are presented. Comparing these measurements to those from Pb-Pb collisions at $\sqrt{s_{\rm{NN}}} = 5.02$ TeV, $v_{2}$ is found to be suppressed for mid-central collisions at the same centrality, and enhanced for central collisions. The values of $v_{3}$ are generally larger in Xe-Xe than in Pb-Pb at a given centrality. These observations are consistent with expectations from hydrodynamic predictions. When both $v_{2}$ and $v_{3}$ are divided by their corresponding eccentricities for a variety of initial state models, they generally scale with transverse density when comparing Xe-Xe and Pb-Pb, with some deviations observed in central Xe-Xe and Pb-Pb collisions. These results assist in placing strong constraints on both the initial state geometry and medium response for relativistic heavy-ion collisions.

6 data tables
More…

Measurements of longitudinal and transverse momentum distributions for neutral pions in the forward-rapidity region with the LHCf detector

The LHCf collaboration Adriani, O. ; Berti, E. ; Bonechi, L. ; et al.
Phys.Rev.D 94 (2016) 032007, 2016.
Inspire Record 1385877 DOI 10.17182/hepdata.74066

The differential cross sections for inclusive neutral pions as a function of transverse and longitudinal momentum in the very forward rapidity region have been measured at the Large Hadron Collider (LHC) with the Large Hadron Collider forward detector (LHCf) in proton-proton collisions at $\sqrt{s}=$ 2.76 and 7 TeV and in proton-lead collisions at nucleon-nucleon center-of-mass energies of $\sqrt{s_\text{NN}}=$ 5.02 TeV. Such differential cross sections in proton-proton collisions are compatible with the hypotheses of limiting fragmentation and Feynman scaling. Comparing proton-proton with proton-lead collisions, we find a sizable suppression of the production of neutral pions in the differential cross sections after subtraction of ultra-peripheral proton-lead collisions. This suppression corresponds to the nuclear modification factor value of about 0.1-0.3. The experimental measurements presented in this paper provide a benchmark for the hadronic interaction Monte Carlo simulation codes that are used for the simulation of cosmic ray air showers.

20 data tables

The average $\pi^{0}$ transverse momenta for the rapidity range $8.8<y<10.6$ in $p+p$ collisions at $\sqrt{s}=2.76$ and 7 TeV and for the rapidity range $-8.8>y_\rm{lab}>-10.6$ in $p+\rm{Pb}$ collisions at $\sqrt{s_\rm{NN}}=5.02$ TeV. The rapidity values for $p+\rm{Pb}$ collisions are in the detector reference frame and must be multiplied by -1.

Production rate for the $\pi^{0}$ production in the rapidity range $8.8 < y < 9.0$ in $p+p$ collisions and in the rapidity range $-8.8 > y_\rm{lab} > -9.0$ in $p+\rm{Pb}$ collisions.

Production rate for the $\pi^{0}$ production in the rapidity range $9.0 < y < 9.2$ in $p+p$ collisions and in the rapidity range $-9.0 > y_\rm{lab} > -9.2$ in $p+\rm{Pb}$ collisions.

More…

Two-particle Bose-Einstein correlations in $pp$ collisions at $\mathbf {\sqrt{s} =}$ 0.9 and 7 TeV measured with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 466, 2015.
Inspire Record 1346844 DOI 10.17182/hepdata.70016

The paper presents studies of Bose-Einstein Correlations (BEC) for pairs of like-sign charged particles measured in the kinematic range $p_{\rm T}>$ 100 MeV and $|\eta|<$ 2.5 in proton--proton collisions at centre-of-mass energies of 0.9 and 7 TeV with the ATLAS detector at the CERN Large Hadron Collider. The integrated luminosities are approximately 7 $\mu$b$^{-1}$, 190 $\mu$b$^{-1}$ and 12.4 nb$^{-1}$ for 0.9 TeV, 7 TeV minimum-bias and 7 TeV high-multiplicity data samples, respectively. The multiplicity dependence of the BEC parameters characterizing the correlation strength and the correlation source size are investigated for charged-particle multiplicities of up to 240. A saturation effect in the multiplicity dependence of the correlation source size is observed using the high-multiplicity 7 TeV data sample. The dependence of the BEC parameters on the average transverse momentum of the particle pair is also investigated.

24 data tables

Systematic uncertainties on $\lambda$ and $R$ for the exponential fit of the two-particle double-ratio correlation function $R_{2}(Q)$ in the full kinematic region at $\sqrt{s} = 0.9$ and $7\ TeV$ for minimum-bias and high-multiplicity (HM) events, $n_{ch} \ge 2$ and $n_{ch} \ge 150$, respectively.

Results of fitting the multiplicity, $n_{ch}$, dependence of the BEC parameters $R$ and $\lambda$ with different functional forms for $\sqrt{s} = 0.9$ and $7\ TeV$. The $n_{ch}$ fit of $R(n_{ch})$ is applied to $7\ TeV$ minimum-bias events at $n_{ch} \le 55$ and to $0.9\ TeV$ minimum-bias events. The constant fit of $R(n_{ch} )$ is applied to $7\ TeV$ minimum-bias events for $n_{ch} > 55$ and to $7\ TeV$ high-multiplicity events. The exponential fit of $\lambda(n_{ch})$ is applied to $7\ TeV$ minimum-bias and high-multiplicity events.The error represent the quadratic sum of the statistical and systematic uncertainties.

Results of fitting the transverse momentum of the pair, $k_{T}$, dependence of the BEC parameters $R$ and $\lambda$ with the exponential fitting function for $\sqrt{s} = 0.9$ and $7\ TeV$. The error represent the quadratic sum of the statistical and systematic uncertainties.

More…