None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
THE BETTER FIT FOR PI- AND BARIONBAR IS THE SUM OF TWO EXPONENT: A*EXP(-B1*PT**2)+D*EXP(-B2*PT**2).FOR PI- B1=30+-4 AND B2=6.3+-.3 .FOR BARIONBAR B1=46+-18 AND B2=3.9+-.5.
No description provided.
No description provided.
None
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
Topological cross sections and characteristics of charged particle multiplicity distributions for¯nn andnn interactions and¯nn annihilations at 6·1 GeV/c are presented. KNO-distributions for¯nn andnn interactions are very similar. Characteristics for¯nn and¯pp annihilations are identical at equal energies.
No description provided.
No description provided.
No description provided.
The reaction pp->d K+ Kbar0 has been investigated at an excess energy of Q=46 MeV above the (K+ Kbar0) threshold with ANKE at COSY-Juelich. From the detected coincident dK+ pairs about 1000 events with a missing Kbar0 were identified, corresponding to a total cross section of sigma(pp->d K+ Kbar0)=(38 +/- 2(stat) +/- 14(syst)) nb. Invariant-mass and angular distributions have been jointly analyzed and reveal s-wave dominance between the two kaons, accompanied by a p-wave between the deuteron and the kaon system. This is interpreted in terms of a0+(980)-resonance production.
Total cross section for P P --> DEUT K+ KBAR0.
Centre of mass angular distribution of the deuteron with respect to the direction of the incoming proton.
Centre of mass angular distribution of the vector joining the K+ and KBAR0 with respect to the direction of the incoming proton.
We report on a measurement of the ratio of the differential cross sections for W and Z boson production as a function of transverse momentum in proton-antiproton collisions at sqrt(s) = 1.8 TeV. This measurement uses data recorded by the D0 detector at the Fermilab Tevatron in 1994-1995. It represents the first investigation of a proposal that ratios between W and Z observables can be calculated reliably using perturbative QCD, even when the individual observables are not. Using the ratio of differential cross sections reduces both experimental and theoretical uncertainties, and can therefore provide smaller overall uncertainties in the measured mass and width of the W boson than current methods used at hadron colliders.
The measured W and Z0 cross sections used to compute the ratio.
The measured ratios of W+-/Z0 cross sections, corrected for the branching ratios BR(W-->e-nue)=0.1073+-0.0025 and BR(Z0-->E+E-)=0.033632+-0.000059 (PDG 2000). The error given is the total error, but note that the 4.3pct error in the luminosity cancels completely in the ratio.