None
No description provided.
No description provided.
No description provided.
A measurement of the cross section for the inclusive production of isolated prompt photons in pp collisions at a centre-of-mass energy sqrt(s) = 7TeV is presented. The measurement covers the pseudorapidity ranges |eta|<1.37 and 1.52<|eta|<1.81 in the transverse energy range 15 < E_T <100 GeV. The results are based on an integrated luminosity of 880 nb-1, collected with the ATLAS detector at the Large Hadron Collider. Photon candidates are identified by combining information from the calorimeters and from the inner tracker. Residual background in the selected sample is estimated from data based on the observed distribution of the transverse isolation energy in a narrow cone around the photon candidate. The results are compared to predictions from next-to-leading order perturbative QCD calculations.
The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range < 0.6.
The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range 0.6 to 1.37.
The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range 1.52 to 1.81.
We present a comprehensive study of the inclusive production of V 0 V 0 pairs (V 0 =Lambda, Lambda-bar or K S ) by Sigma - and pi - of 340 GeV/ c momentum and neutrons of 260 GeV/ c mean momentum in copper and carbon targets. In particular, the de pendence of the x F spectra on the combination of beam-particle and produced V 0 V 0 pair is investigated and compared to predictions obtained from PYTHIA and QSGM calculations. The data and these predictions differ in many details, the agreement can at b est be termed as qualitative. A signal from decays of the tensor meson f? 2 (1525) was observed in the K S K S mass distribution and inclusive production cross sections were measured. No signal was found from the double-strange H-dibaryon decaying to Lamb daLambda.
V0 V0 cross section for N on CU target.
V0 V0 cross section for N on C target.
V0 V0 cross section for PI- on CU target.
We report on a measurement of the inclusive cross sections of $\Lambda$ , $\overline\Lambda$ , K 0
Total inclusive hyperon production cross sections for the SIGMA- beam on the Copper target.
Total inclusive hyperon production cross sections for the SIGMA- beam on the Carbon target.
Total inclusive hyperon production cross sections per nucleon for the SIGMA- beam, and the exponent in the cross section parametrization of the form A**POWER.
The energy spectrum and the cross section of photonuclear interactions of 180 GeV muons in iron were measured at the CERN SPS using prototype modules of the ATLAS hadron calorimeter. The differential
Measured differential cross section for fractional photonuclear muon energy loss.
Total photonuclear cross section which gives best agreement of energy loss with theory. See text of paper for details.
None
Total inclusive production cross sections for the SIGMA- beam on the Coppertarget.
Total inclusive production cross sections for the SIGMA- beam on the Carbontarget.
Total inclusive production cross sections per nucleon for the SIGMA- beam, and the exponent in the cross section parametrization of the form A**POWER.
We report on a measurement of the differential cross sections of inclusive$K^{\pm}_{890}$production in$\sigma^-, pi^-$and ne
The production cross sections for K*+- per nucleus and per nucleon for the SIGMA- beam.
The production cross sections for K*+- per nucleus and per nucleon for the PI- beam.
The production cross sections for K*+- per nucleus and per nucleon for the NEUTRON- beam.
A test of the QED process e+e- -> gamma gamma (gamma) is reported. The data analysed were collected with the DELPHI detector in 1998 and 1999 at the highest energies achieved at LEP, reaching 202 GeV in the centre-of-mass. The total integrated luminosity amounts to 375.7 pb^{-1}. The differential and total cross-sections for the process e+e- -> gamma gamma were measured, and found to be in agreement with the QED prediction. 95% Confidence Level (C.L.) lower limits on the QED cut-off parameters of Lambda+ > 330 GeV and Lambda- > 320 GeV were derived. A 95% C.L. lower bound on the mass of an excited electron of 311 GeV/c^2 (for lambda_gamma = 1) was obtained. s-channel virtual graviton exchange was searched for, resulting in 95% C.L. lower limits on the string mass scale, M_S: M_S > 713 GeV/c^2 (lambda = 1) and M_S > 691 GeV/c^2 (lambda = -1).
No description provided.
No description provided.
No description provided.
An analysis of the data collected in 1997 and 1998 with the DELPHI detector at e+e- collision energies close to 183 and 189 GeV was performed in order to extract the hadronic and leptonic fermion-pair cross-sections, as well as the leptonic forward-backward asymmetries and angular distributions. The data are used to put limit on contact interactions between fermions, the exchange of R-parity violating SUSY sneutrinos, Z' bosons and the existence of gravity in extra dimensions.
No description provided.
No description provided.
No description provided.
An updated analysis using about 1.5 million events recorded at $\sqrt{s} = M_Z$ with the DELPHI detector in 1994 is presented. Eighteen infrared and collinear safe event shape observables are measured as a function of the polar angle of the thrust axis. The data are compared to theoretical calculations in ${\cal O} (\alpha_s^2)$ including the event orientation. A combined fit of $\alpha_s$ and of the renormalization scale $x_{\mu}$ in $\cal O(\alpha_s^2$) yields an excellent description of the high statistics data. The weighted average from 18 observables including quark mass effects and correlations is $\alpha_s(M_Z^2) = 0.1174 \pm 0.0026$. The final result, derived from the jet cone energy fraction, the observable with the smallest theoretical and experimental uncertainty, is $\alpha_s(M_Z^2) = 0.1180 \pm 0.0006 (exp.) \pm 0.0013 (hadr.) \pm 0.0008 (scale) \pm 0.0007 (mass)$. Further studies include an $\alpha_s$ determination using theoretical predictions in the next-to-leading log approximation (NLLA), matched NLLA and $\cal O(\alpha_s^2$) predictions as well as theoretically motivated optimized scale setting methods. The influence of higher order contributions was also investigated by using the method of Pad\'{e} approximants. Average $\alpha_s$ values derived from the different approaches are in good agreement.
The weighted value of ALPHA-S from all the measured observables using experimentally optimized renormalization scale values and corrected for the b-mass toleading order.
The value of ALPHA-S derived from the JCEF and corrected for heavy quark mass effects. The quoted errors are respectively due to experimental error, hadronization, renormalization scale and heavy quark mass correction uncertainties.
Energy Energy Correlation EEC.