We present a measurement of the $W$ boson production charge asymmetry in $p\bar{p}\rightarrow W+X \rightarrow e\nu +X$ events at a center of mass energy of 1.96 TeV, using 9.7 fb$^{-1}$ of integrated luminosity collected with the D0 detector at the Fermilab Tevatron Collider. The neutrino longitudinal momentum is determined using a neutrino weighting method, and the asymmetry is measured as a function of the $W$ boson rapidity. The measurement extends over wider electron pseudorapidity region than previous results, and is the most precise to date, allowing for precise determination of proton parton distribution functions in global fits.
${\it CP}$-folded $W$ charge asymmetry for data and predictions from MC@NLO using NNPDF2.3 PDFs tabulated in percent (%) for each $|y_W|$ bin. The $\langle|y_W|\rangle$ is calculated as the cross section weighted average of $y_W$ in each bin from RESBOS with photos. For data, the first uncertainty is statistical and the second is systematic. The uncertainties on the prediction come from both the PDF uncertainties and $\alpha_s$ uncertainties. The numbers in this table are the revised data published on 10th December 2014 (after the journal publication).
Correlation coefficients between central values of asymmetry in different $|y_W|$ bins.
We measure the forward-backward asymmetry in the production of $\Lambda_b^0$ and $\overline \Lambda_b^0$ baryons as a function of rapidity in $p \overline p $ collisions at $\sqrt s =1.96$ TeV using $10.4$ fb$^{-1}$ of data collected with the D0 detector at the Fermilab Tevatron collider. The asymmetry is determined by the preference of $\Lambda_b^0$ or $\overline \Lambda_b^0$ particles to be produced in the direction of the beam protons or antiprotons, respectively. The measured asymmetry integrated over rapidity $y$ in the range $0.1<|y|<2$ is $A=0.04 \pm 0.07 {\rm (stat)} \pm 0.02 {\rm (syst)}$.
Efficiencies $\epsilon$, averaged values of background-subtracted transverse momenta $\left< p_T\right>$, backward and forward fitted yields for the signal $N(B)$ and $N(F)$, forward-backward asymmetries $A$, and cross-section ratios $R$ in four intervals of rapidity. Uncertainties on $\left< p_T\right>$, $N(B)$ and $N(F)$ are statistical only. Uncertainties on $\epsilon$ arise from the statistical precision of the simulated event samples.
The forward-backward asymmetries of$$e^ + e^ - \to Z^0 \to b\bar b and e^ + e^ - \to Z^0 \to c\bar c$$
Measurement of the asymmetry in b-quark production on the Z0 peak using a two parameter fit, neglecting the effects of B0-BBAR0 mixing.
Measurement of the asymmetry in b-quark production on the Z0 peak using a two parameter fit and correcting for B0-BBAR0 mixing. The second systematic error is due to the uncertainty of the mixing factor.
Measurement of the asymmetry in c-quark production on the Z0 peak using a two parameter fit.
Angular distributions of charge asymmetry A(Tπ,θ), have been measured for πd elastic scattering. Data were obtained in the backward hemisphere for pion bombarding energies of 143, 180, 220, and 256 MeV. The results are compared with predictions employing different mass and width parameters for the delta isobars.
No description provided.
No description provided.
No description provided.
The production ofb andc quarks ine+e− annihilation has been studied with the CELLO detector in the range from 35 GeV up to the highest PETRA energies. The heavy quarks have been tagged by their semileptonic decays. The charge asymmetries forb quarks at 35 and 43 GeV have been found to beAb=−(22.2±8.1)% andAb=−(49.1±16.5)%, respectively, using a method incorporating jet variables and their correlations for the separation of the heavy quarks from the back ground of the lighter quarks. Forc quarks we obtainAc=−(12.9±8.8)% andAc=+(7.7±14.0)%, respectively. The axial vector coupling constants of the heavy quarksc andb are found to beac=+(0.29±0.46) andab=−(1.15±0.41) taking\(B^0 \overline {B^0 } \) mixing into account. The results are in agreement with the expectations from the standard model.
BOTTOM quark charge asymmetry.
CHARMED quark charge asymmetry.
A measurement of the forward-backward asymmetry (A[FB]) of Drell-Yan lepton pairs in pp collisions at sqrt(s) = 7 TeV is presented. The data sample, collected with the CMS detector, corresponds to an integrated luminosity of 5 inverse femtobarns. The asymmetry is measured as a function of dilepton mass and rapidity in the dielectron and dimuon channels. Combined results from the two channels are also presented. The A[FB] measurement in the dimuon channel and the combination of the two channels are the first such results obtained at a hadron collider. The measured asymmetries are consistent with the standard model predictions.
The unfolded mu+mu- measurement of AFB at the Born level in four rapidity bins. The errors on data are statistical only.
The unfolded e+e- measurement of AFB at the Born level in four rapidity bins. The errors on data are statistical only.
Unfolded combined measurements of AFB in each M-|y| bin (mu+mu- and e+e- combined).
The t t-bar charge asymmetry in proton-proton collisions at sqrt(s) = 7 TeV is measured using the dilepton decay channel (ee, e mu, or mu mu). The data correspond to a total integrated luminosity of 5.0 inverse femtobarns, collected by the CMS experiment at the LHC. The t t-bar and lepton charge asymmetries, defined as the differences in absolute values of the rapidities between the reconstructed top quarks and antiquarks and of the pseudorapidities between the positive and negative leptons, respectively, are measured to be Ac = -0.010 +/- 0.017 (stat.) +/- 0.008 (syst.) and Ac[lep] = 0.009 +/- 0.010 (stat.) +/- 0.006 (syst). The lepton charge asymmetry is also measured as a function of the invariant mass, rapidity, and transverse momentum of the t t-bar system. All measurements are consistent with the expectations of the standard model.
The unfolded ASYMC and ASYMC(LEPTON) measurements.
Measurements of the unfolded ASYMC(LEPTON) values in bins of M(TOP TOPBAR).
Measurements of the unfolded ASYMC(LEPTON) values in bins of ABS(YRAP(TOP TOPBAR)).
A measurement of the electron charge asymmetry in inclusive pp to W + X to e nu + X production at sqrt(s) = 7 TeV is presented based on data recorded by the CMS detector at the LHC and corresponding to an integrated luminosity of 840 inverse picobarns. The electron charge asymmetry reflects the unequal production of positive and negative W bosons in pp collisions. The electron charge asymmetry is measured in bins of absolute value of electron pseudorapidity in the range of abs(eta) < 2.4. The asymmetry rises from about 0.1 to 0.2 as a function of the pseudorapidity and is measured with a relative precision better than 7%. This measurement provides new stringent constraints for parton distribution functions.
Summary of the measured charge asymmetry results. The first uncertainty is statistical and the second is systematic. The theoretical predictions are obtained using MCFM interfaced with four different PDF models. The PDF uncertainties are estimated using the PDF reweighting technique. All values are in units of $10^{-3}$.
Covariance matrix for the systematic uncertainties on the asymmetry. All values are given in units of $10^{-6}$.
A measurement of the forward-backward asymmetry A[FB] of oppositely charged lepton pairs (mu mu and e e) produced via Z/gamma* boson exchange in pp collisions at sqrt(s) = 8 TeV is presented. The data sample corresponds to an integrated luminosity of 19.7 inverse femtobarns collected with the CMS detector at the LHC. The measurement of A[FB] is performed for dilepton masses between 40 GeV and 2 TeV and for dilepton rapidity up to 5. The A[FB] measurements as a function of dilepton mass and rapidity are compared with the standard model predictions.
Unfolded combined measurements of AFB in each M-|y| bin (mu+mu- and e+e- combined).
Unfolded measurement of AFB for the forward rapidity region (e+e-).
Unfolded measurements of AFB in each M-|y| bin (mu+mu-).
We present measurements from the PHENIX experiment of large parity-violating single spin asymmetries of high transverse momentum electrons and positrons from $W^\pm/Z$ decays, produced in longitudinally polarized $p$$+$$p$ collisions at center of mass energies of $\sqrt{s}$=500 and 510~GeV. These asymmetries allow direct access to the anti-quark polarized parton distribution functions due to the parity-violating nature of the $W$-boson coupling to quarks and anti-quarks. The results presented are based on data collected in 2011, 2012, and 2013 with an integrated luminosity of 240 pb$^{-1}$, which exceeds previous PHENIX published results by a factor of more than 27. These high $Q^2$ data provide an important addition to our understanding of anti-quark parton helicity distribution functions.
Longitudinal single-spin asymmetries, $A_L$, for the 2011 and 2012 data sets (combined) spanning the entire $\eta$ range of PHENIX ($\left|\eta\right|<0.35$), for the 2013 data set separated into two $\eta$ bins, and for the combined 2011-2013 data sets.