Cross sections for π − p→n π o at 5.9, 10.1 and 13.8 GeV/ c incident momentum are presented in the angular region from 180 o to u , the crossed four-momentum transfer squared, of −2(GeV) 2 and the energy dependence is discussed. The cross section for π − p→n η o integrated over the same angular region at 5.9 GeV/ c is also presented.
No description provided.
No description provided.
No description provided.
We present results on charged multiplicity nch=2 and nch>2 muon events produced in e+e− collisions with 〈s12〉=7.3 GeV at 90° to the beams. The background-subtracted inclusive cross section for the nch=2 events is 10.2±5.4 pb/sr, in agreement with the expected contribution from the heavy lepton τ. The cross section for the nch>2 events is 19.0±6.5 pb/sr whereas we expect only 2.9 pb/sr from the τ, indicating that we may be seeing the weak decays of charmed mesons.
No description provided.
No description provided.
We report on inclusive hadron production in e+e− annihilation at 〈s〉=53 GeV2, using a small solid-angle magnetic spectrometer with good particle identification at 90° to the beams at SPEAR II. The cross sections of π± and K± when compared with data at s=23 GeV2 exhibit scaling in (sβ)dσdx with x=2Es12. The invariant cross section depends on the momentum as p−4.
No description provided.
No description provided.
No description provided.
The inclusive charged-hadron momentum spectra from the ψ and ψ′ decays produced in e+e− collisions at SPEAR are presented. The data were obtained with a small solid-angle, single-arm magnetic spectrometer with good particle-identification abilities centered at 90 degrees with respect to the beams. The particle-separated invariant cross sections are compared with data from e+e− collisions at s=4.8 and 7.3 GeV, obtained with the same spectrometer, in order to observe the difference between hadron production at the resonances and in the continuum.
AT J/PSI.
AT J/PSI.
AT J/PSI.
In this letter, measurements of the shared momentum fraction ($z_{\rm{g}}$) and the groomed jet radius ($R_{\rm{g}}$), as defined in the SoftDrop algorihm, are reported in \pp collisions at $\sqrt{s} = 200$ GeV collected by the STAR experiment. These substructure observables are differentially measured for jets of varying resolution parameters from $R = 0.2 - 0.6$ in the transverse momentum range $15 < p_{\rm{T, jet}} < 60$ GeV$/c$. These studies show that, in the $p_{\rm{T, jet}}$ range accessible at $\sqrt{s} = 200$ GeV and with increasing jet resolution parameter and jet transverse momentum, the $z_{\rm{g}}$ distribution asymptotically converges to the DGLAP splitting kernel for a quark radiating a gluon. The groomed jet radius measurements reflect a momentum-dependent narrowing of the jet structure for jets of a given resolution parameter, i.e., the larger the $p_{\rm{T, jet}}$, the narrower the first splitting. For the first time, these fully corrected measurements are compared to Monte Carlo generators with leading order QCD matrix elements and leading log in the parton shower, and to state-of-the-art theoretical calculations at next-to-leading-log accuracy. We observe that PYTHIA 6 with parameters tuned to reproduce RHIC measurements is able to quantitatively describe data, whereas PYTHIA 8 and HERWIG 7, tuned to reproduce LHC data, are unable to provide a simultaneous description of both $z_{\rm{g}}$ and $R_{\rm{g}}$, resulting in opportunities for fine parameter tuning of these models for \pp collisions at RHIC energies. We also find that the theoretical calculations without non-perturbative corrections are able to qualitatively describe the trend in data for jets of large resolution parameters at high $p_{\rm{T, jet}}$, but fail at small jet resolution parameters and low jet transverse momenta.
The data points and the error bars represent the mean $p_{\rm{T, jet}}^{\rm{det}}$ and the width (RMS) for a given $p_{\rm{T, jet}}^{\rm{part}}$ selection $R = 0.4$.
The data points and the error bars represent the mean $p_{\rm{T, jet}}^{\rm{det}}$ and the width (RMS) for a given $p_{\rm{T, jet}}^{\rm{part}}$ selection $R = 0.2$.
The data points and the error bars represent the mean $p_{\rm{T, jet}}^{\rm{det}}$ and the width (RMS) for a given $p_{\rm{T, jet}}^{\rm{part}}$ selection $R = 0.6$.
A charge asymmetry has been observed in final-state jets from e+e− annihilation into hadrons at √s =29 GeV. The measured asymmetry is consistent with the prediction of electroweak theory. The product of axial-vector weak coupling constants, averaged over all quark flavors, is determined to be 〈gAegAq〉=-0.34±0.06±0.05.
Measured differential cross section after efficiency and radiative cross sections. THETA is the polar-angle of the thrust axis defined to be the angle between the direction of the incident positron and the thrust axis taken in the direction of the positron jet. Numerical values requested from the authors. Data are normalised to the total expected QED cross section.
None
No description provided.
A study of the lateral development of jets of hadrons produced in electron-positron annihilation has been used to determine the strong coupling constant αs. Data were obtained with the MAC detector at the SLAC e+e− storage ring PEP at s=29 GeV. Based on the parton calculations of Gottschalk and Shatz, a value for αs of 0.133±0.005(stat)±0.009(syst) has been determined for string fragmentation, and 0.112±0.008(stat)±0.007(syst) for an independent-jet model.
JET FRACTION MEASURED. FIT ACCORDING TO:. T.D. GOTTSCHALK AND M.P.SCHATZ CALT-68-1172 (1985).
JET FRACTION MEASURED. FIT ACCORDING TO INDEPENTENT JET MODEL.
We present measurements of forward-backward energy asymmetries of τ-lepton decay products from the reaction e+e−→τ+τ− in data collected with the MAC detector operating at the SLAC storage ring PEP at a center-of-mass energy of 29 GeV. The energy asymmetries for the decays τ→ντeν¯e, τ→ντμν¯μ, τ→ντπ, and τ→ντρ are interpreted as effects caused by the combination of maximally parity-violating weak τ decays and a longitudinal polarization produced by the interference of electromagnetic and weak processes. From the forward-backward polarization asymmetry AP=(0.06±0.07)×(1±0.011), we determine the coupling-constant product gaegvτ=(0.26 ±0.31)×(1±0.011). Assuming gae=-(1/2 as expected, we find gvτ=(-0.52±0.62)×(1±0.011), consistent with the prediction of the Glashow-Weinberg-Salam model of electroweak interactions. Alternatively, assuming the standard-model prediction of negligible polarization in τ-pair production, the leptonic energy spectra are used to measure the Michel parameter to be 0.79±0.10±0.10, consistent with the V-A hypothesis for the τν¯τ-W vertex.
No description provided.
The Λ polarization and the differential cross section for the reaction γ+p→K++Λ have been measured, using the Caltech synchrotron, at 90° in the c.m. system and at laboratory photon energies of 1100, 1200, and 1300 MeV. Protons from the asymmetric decay of the Λ were detected by counters placed above and below the production plane. Kaons were identified by their behavior in a thick range telescope. Polarization results were PΛ=+0.34±0.09 at 1100 MeV, +0.30±0.07 at 1200 MeV, and +0.08±0.07 at 1300 MeV, where PΛ was measured in the p^γ×p^Λ direction. The differential cross section was constant with energy at 0.14±0.01 μb/sr. Although the apparent bump in the polarization at 90° at a total energy of ≈1700 MeV adds support to models which invoke a resonance here, no really new conclusions can be reached.
No description provided.
No description provided.