The production of ${\rm J}/\psi$ and
The J/PSI production cross sections, per target nucleon, times the di-muon branching ratio for the two data samples.
The PSI(3685) production cross sections, per target nucleon, times the di-muon branching ratio for the two data samples.
J/PSI production cross section times the di-muon branching ratio for the BEtarget as a function of the Feynman X bin.
A detailed study of J/ ψ , ψ ′ and Drell-Yan production in S-U collisions has been performed by experiment NA38 at the CERN SPS. This paper presents production cross sections and their centrality dependence, based on the largest sample of S-U events collected by the experiment.
Cross sections (times decay BR into di-muons) and ratios.
Centrality dependence of the rations of J/PSI/DY and PSI(3685)/J/PSI production.
psi' production is studied in Pb-Pb collisions at 158 GeV/c per nucleon incident momentum. Absolute cross-sections are measured and production rates are investigated as a function of the centrality of the collision. The results are compared with those obtained for lighter colliding systems and also for the J/psi meson produced under identical conditions.
Inclusive cross sections for PSI(3685) and J/PSI, multiplied by their Branching ratios into MU+MU-,.
Inclusive cross sections for Drell Yan in the 4.2-7 GeV/c** mass range.
Inclusive cross sections for PSI(3685) and J/PSI, multiplied by theirBransching ratios into MU+MU-, and for Drell Yan in the 4.2-7 GeV/c** massrange.
Absolute J/ ψ and ψ ′ production cross sections have been measured at the CERN SPS, with 450 GeV/ c protons incident on a set of C, Al, Cu and W targets. Complementing these values with the results obtained by experiment NA51, which used the same beam and detector with H and D targets, we establish a coherent picture of charmonia production in proton-induced reactions at SPS energies. In particular, we show that the scaling of the J/ ψ cross section with the mass number of the target, A, is well described as A α , with α ψ =0.919±0.015. The ratio between the J/ ψ and ψ ′ yields, in our kinematical window, is found to be independent of A, with α ψ ′ − α ψ =0.014±0.011.
The ratio of the production cross sections, in the di-muon channel. Note that there are wo set of CU and WT data with targets of different lengths. An average values is also given for these.
Low mass muon pair production at high P T and low X F studied in pU, OU and SU 200 GeV per nucleon react ions. When energy density or projectile mass are increased, φ production is enhanced as compared with the yield of muon pairs in the mass continuum (1.7< M μμ < 2.4 GeV/ c 2 ), whereas the production of ω and ϱ, experimentally unresolved, remains approximately constant. This φ enhancement is in agreement with predictions based on quark-gluon plasma formation and, together with the previously reported J/Ψ suppression, puts severe constraints on a purely hadronic description of nucleus-nucleus collisions.
The cross sections are parametrized as A**POWER.
The dimuon production in 200 GeV/nucleon oxygen-uranium interactions is studied by the NA 38 Collaboration. The production ofJ/ψ, correlated with the transverse energyET, is investigated and compared to the continuum, as a function of the dimuon massM and transverse momentumPT. A value of 0.64±0.06 is found for the ratio (ψ/Continuum at highET)/(ψ/Continuum at lowET), from which theJ/ψ relative suppression can be extracted. This suppression is enhanced at lowPT.
Ratio of number of J/PSI's to number of continuum events in given mass interval.
The production of the J/ ψ and ψ ′ charmonia states has been studied, through their dimuon decay, in proton, Oxygen and Sulphur induced reactions, by the NA38 experiment at the CERN SPS. The proton data was collected with beams of 200 and 450 GeV, while the ion beams had an energy of 200 GeV per incident nucleon. The J/ ψ production cross-section per nucleon-nucleon collision exhibits a remarkably continuous pattern, as a function of the product of the mass numbers of the interacting nuclei, from pp up to S-U reactions. The same pattern is observed within S-U collisions, as a function of the collision centrality. While in p-A interactions both charmonia states exhibit the same A-dependence, in S-U collisions the ψ ′ production is very strongly suppressed.
Results of fitting the 200 and 450 GeV J/PSI data separately with a power law parametrization SIG=SIG0*(A*B)**POWER, where A and B are the beam and targetmass numbers. The value obtained from a combined fit is also given, as well as the ratio between the values of SIG0 for the 200 and 450 GeV data sets.
The ratio between the PSI(3685) and the J/PSI production cross section, times their BR into di-muons, at an incident beam energy of 450 GeV per nucleon. The errors are combined statistical and systematic.
The ratio between the PSI(3685) and the J/PSI production cross section, times their BR into di-muons, at an incident beam energy of 200 GeV per nucleon. The errors are combined statistical and systematic.
The dimuon production in 200 GeV/nucleon O-U, O-Cu, S-U and p-U reactions is studied in function of transverse energy E T produced by the collision. The J / ψ production relative to continuum events is suppressed for heavy ion induced reactions when E T increases. This suppression is enhanced at low transverse momentum. The π and K meson distributions extracted from the data, have, for each reaction, a similar average transverse momentum which increases only slightly with the transverse energy.
No description provided.
No description provided.
No description provided.
Muon pair production in p-A, S-U and Pb-Pb collisions has been studied by the NA38 and NA50 collaborations at the CERN SPS. In this paper we present an analysis of the dimuon invariant mass region bet
CHARM-CHARMBAR cross section Need to divide by 2 to consider only the XF>0 hemisphere.
The NA50 Collaboration has measured heavy-quarkonium production in p-A collisions at 450 GeV incident energy (sqrt(s) = 29.1 GeV). We report here results on the production of the Upsilon states and of high-mass Drell-Yan muon pairs (m > 6 GeV). The cross-section at midrapidity and the A-dependence of the measured yields are determined and compared with the results of other fixed-target experiments and with the available theoretical estimates. Finally, we also address some issues concerning the transverse momentum distributions of the measured dimuons.
Drell-Yann (for the mass region MMUMU>6GeV/c**2) and bottomonium cross sections, and their ratio.
Mean pT and Mean PT**2 for Drell-Yann (4.5<MMUMU<8 GeV/c**2) Errors for Drell-Yann are purely statistical, error value for Upsilon includes a systematical error due to uncertianty in the extrapolation of the drell-yann yield into the upsilon region. The total error is anyway dominated by the statistical contribution.
ALPHA parameter.