Date

Version 2
Precision measurement of forward $Z$ boson production in proton-proton collisions at $\sqrt{s} = 13$ TeV

The LHCb collaboration Aaij, R. ; Abdelmotteleb, A.S.W. ; Abellán Beteta, C. ; et al.
JHEP 07 (2022) 026, 2022.
Inspire Record 1990313 DOI 10.17182/hepdata.132011

A precision measurement of the $Z$ boson production cross-section at $\sqrt{s} = 13$ TeV in the forward region is presented, using $pp$ collision data collected by the LHCb detector, corresponding to an integrated luminosity of 5.1 fb$^{-1}$. The production cross-section is measured using $Z\rightarrow\mu^+\mu^-$ events within the fiducial region defined as pseudorapidity $2.0<\eta<4.5$ and transverse momentum $p_{T}>20$ GeV/$c$ for both muons and dimuon invariant mass $60

27 data tables

Relative uncertainty for the integrated $Z -> \mu^{+} \mu^{-}$ cross-section measurement. The total uncertainty is the quadratic sum of uncertainties from statistical, systematic and luminosity contributions.

Final state radiation correction used in the $y^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.

Final state radiation correction used in the $p_{T}^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.

More…

Measurement of $J/\psi$ production cross-sections in $pp$ collisions at $\sqrt{s}=5$ TeV

The LHCb collaboration Aaij, R. ; Abdelmotteleb, A.S.W. ; Beteta, C. Abellán ; et al.
JHEP 11 (2021) 181, 2021.
Inspire Record 1915030 DOI 10.17182/hepdata.115512

The production cross-sections of $J/\psi$ mesons in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=5$ TeV are measured using a data sample corresponding to an integrated luminosity of $9.13\pm0.18~\text{pb}^{-1}$, collected by the LHCb experiment. The cross-sections are measured differentially as a function of transverse momentum, $p_{\text{T}}$, and rapidity, $y$, and separately for $J/\psi$ mesons produced promptly and from beauty hadron decays (nonprompt). With the assumption of unpolarised $J/\psi$ mesons, the production cross-sections integrated over the kinematic range $0

20 data tables

Double-differential production cross-sections for prompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.

Double-differential production cross-sections for nonprompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.

Single-differential production cross-sections for prompt $J/\psi$ mesons as a function of $p_\text{T}$. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, and the last are uncorrelated systematic uncertainties.

More…

Directed, elliptic and higher order flow harmonics of protons, deuterons and tritons in Au+Au collisions at $\sqrt{s_{NN}} = 2.4$ GeV

The HADES collaboration Adamczewski-Musch, J. ; Arnold, O. ; Behnke, C. ; et al.
Phys.Rev.Lett. 125 (2020) 262301, 2020.
Inspire Record 1797626 DOI 10.17182/hepdata.102468

Flow coefficients $v_{n}$ of the orders $n = 1 - 6$ are measured with the High-Acceptance DiElectron Spectrometer (HADES) at GSI for protons, deuterons and tritons as a function of centrality, transverse momentum and rapidity in Au+Au collisions at $\sqrt{s_{NN}} = 2.4$ GeV. Combining the information from the flow coefficients of all orders allows to construct for the first time, at collision energies of a few GeV, a multi-differential picture of the angular emission pattern of these particles. It reflects the complicated interplay between the effect of the central fireball pressure on the emission of particles and their subsequent interaction with spectator matter. The high precision information on higher order flow coefficients is a major step forward in constraining the equation-of-state of dense baryonic matter.

18 data tables

The $p_{t}$ dependence of $v_{1}$ for protons, deuterons and tritons in the rapidity interval $-0.25 < y_{cm} < -0.15$ in semi-central ($20 - 30$ %) $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{{s}_{NN}}=2.4$ GeV.

The $p_{t}$ dependence of $v_{3}$ for protons, deuterons and tritons in the rapidity interval $-0.25 < y_{cm} < -0.15$ in semi-central ($20 - 30$ %) $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{{s}_{NN}}=2.4$ GeV.

The $p_{t}$ dependence of $v_{5}$ for protons, deuterons and tritons in the rapidity interval $-0.25 < y_{cm} < -0.15$ in semi-central ($20 - 30$ %) $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{{s}_{NN}}=2.4$ GeV.

More…

Measurement of $\phi $ meson production in $p + p$ interactions at 40, 80 and $158 \, \hbox {GeV}/c$ with the NA61/SHINE spectrometer at the CERN SPS

The NA61/SHINE collaboration Aduszkiewicz, A. ; Andronov, E.V. ; Antićić, T. ; et al.
Eur.Phys.J.C 80 (2020) 199, 2020.
Inspire Record 1749613 DOI 10.17182/hepdata.93228

Results on $\phi$ meson production in inelastic p+p collisions at CERN SPS energies are presented. They are derived from data collected by the NA61/SHINE fixed target experiment, by means of invariant mass spectra fits in the $\phi \to K^+K^-$ decay channel. They include the first ever measured double differential spectra of $\phi$ mesons as a function of rapidity $y$ and transverse momentum $p_T$ for proton beam momenta of 80 GeV/c and 158 GeV/c, as well as single differential spectra of $y$ or $p_T$ for beam momentum of 40 GeV/c. The corresponding total $\phi$ yields per inelastic p+p event are obtained. These results are compared with existing data on $\phi$ meson production in p+p collisions. The comparison shows consistency but superior accuracy of the present measurements. The emission of $\phi$ mesons in p+p reactions is confronted with that occurring in Pb+Pb collisions, and the experimental results are compared with model predictions. It appears that none of the considered models can properly describe all the experimental observables.

17 data tables

Double differential multiplicity of $\phi$ mesons produced in minimum bias p+p collisions at beam momentum of 158 GeV/c, as a function of transverse momentum $p_T$ and rapidity $y$.

Double differential multiplicity of $\phi$ mesons produced in minimum bias p+p collisions at beam momentum of 80 GeV/c, as a function of transverse momentum $p_T$ and rapidity $y$.

Transverse momentum $p_T$ spectrum of $\phi$ mesons produced in minimum bias p+p collisions at beam momentum of 40 GeV/c, in a broad rapidity $y$ bin of (0, 1.5).

More…

Version 2
Sub-threshold production of K$^{0}_{s}$ mesons and ${\Lambda}$ hyperons in Au(1.23A GeV)$+$Au

The HADES collaboration Adamczewski-Musch, J. ; Arnold, O. ; Behnke, C. ; et al.
Phys.Lett.B 793 (2019) 457-463, 2019.
Inspire Record 1709767 DOI 10.17182/hepdata.90954

We present first data on sub-threshold production of K0 s mesons and {\Lambda} hyperons in Au+Au collisions at $\sqrt{s_{NN}}$ = 2.4 GeV. We observe an universal scaling of hadrons containing strangeness, independent of their corresponding production thresholds. Comparing the yields, their scaling, and the shapes of the rapidity and the pt spectra to state-of-the-art transport model (UrQMD, HSD, IQMD) predictions, we find that none of the latter can simultaneously describe all observables with reasonable \c{hi}2 values.

18 data tables

Example of $K^{0}_{S}$ signal for 0-40% most central events, over mixed-event background for the bin $-0.05 < y_{cm} < 0.05$ and reduced transverse masses between $80-120 MeV/c^{2}$.

Example of $\Lambda$ signal for 0-40% most central events, over mixed-event background for the bin $-0.05 < y_{cm} < 0.05$ and reduced transverse masses between $100-150 MeV/c^{2}$.

Reduced transverse mass ($m_{t}-m_{0}$) spectra of $K^{0}_{S}$ for the 0-40% most central events. NOTE: The spectra are not scaled by $1/N_{Events}$! To compare the data, divide by $N_{Events} = 2.1997626 x 10^{9}$

More…

Version 3
Deep sub-threshold {\phi} production and implications for the K+/K- freeze-out in Au+Au collisions

The HADES collaboration Adamczewski-Musch, J. ; Arnold, O. ; Behnke, C. ; et al.
Phys.Lett.B 778 (2018) 403-407, 2018.
Inspire Record 1519164 DOI 10.17182/hepdata.92099

We present data on charged kaons (K+-) and {\phi} mesons in Au(1.23A GeV)+Au collisions. It is the first simultaneous measurement of K and {\phi} mesons in central heavy-ion collisions below a kinetic beam energy of 10A GeV. The {\phi}/K- multiplicity ratio is found to be surprisingly high with a value of 0.52 +- 0.16 and shows no dependence on the centrality of the collision. Consequently, the different slopes of the K+ and K- transverse-mass spectra can be explained solely by feed- down, which substantially softens the spectra of K- mesons. Hence, in contrast to the commonly adapted argumentation in literature, the different slopes do not necessarily imply diverging freeze- out temperatures of K+ and K- mesons caused by different couplings to baryons.

13 data tables

Acceptance and efficiency corrected transverse-mass spectra around mid-rapidity.

$K^{+}$ signal and the corresponding background fit for the region covering mid-rapidity and $m_{t}−m_{0}$ between 25 and 50 $MeV/c^{2}$.

$K^{-}$ signal and the corresponding background fit for the region covering mid-rapidity and $m_{t}−m_{0}$ between 50 and 75 $MeV/c^{2}$.

More…

D-meson production in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV and in pp collisions at $\sqrt{s}=7$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Rev.C 94 (2016) 054908, 2016.
Inspire Record 1465513 DOI 10.17182/hepdata.73941

The production cross sections of the prompt charmed mesons D$^0$, D$^+$, D$^{*+}$ and D$_s$ were measured at mid-rapidity in p-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}}=5.02$ TeV with the ALICE detector at the LHC. D mesons were reconstructed from their decays D$^0\rightarrow{\rm K}^-\pi^+$, D$^+\rightarrow{\rm K}^-\pi^+\pi^+$, D$^{*+}\rightarrow D^0\pi^+$, D$_s^+\rightarrow\phi\pi^+\rightarrow{\rm K}^-{\rm K}^+\pi^+$, and their charge conjugates. The $p_{\rm T}$-differential production cross sections were measured at mid-rapidity in the interval $1

21 data tables

pT-differential cross section of inclusive Dzero mesons in pp collisions at sqrt{sNN}=7 TeV in the rapidity interval |y|<0.5. Branching ratio of D0->Kpi : 0.0388.

pT-differential cross section of prompt Dzero mesons in pp collisions at sqrt{sNN}=7 TeV in the rapidity interval |y|<0.5. Branching ratio of D0->Kpi : 0.0388. Data points for pt<2 GeV/c from analysis "without vertexing". Data points for pt>2 GeV/c from the analysis "with vertexing" taken from JHEP 1201 (2012) 128 (http://hepdata.cedar.ac.uk/view/ins944757) and corrected for the updated BR value.

First column: production cross sections per unit of rapidity for prompt D0 mesons, inclusive D0 mesons (no feed-down subtraction) and charm quarks at mid-rapidity in pp collisions at 7 TeV. For D0 mesons, the second (sys) error is from the luminosity uncertainty, the third (sys) error is from the branching-ratio uncertainties. For charm quarks, the second (sys) error is from the luminosity uncertainty, the third (sys) error is from the Fragmentation Function uncertainties, the fourth (sys) error is from the rapidity shapes of D0 mesons and single charm quarks. Second column: total production cross sections, extrapolated to the full phase space, for prompt D0 mesons and charm quarks. For D0 mesons, the second (sys) error is the from the extrapolation uncertainty, the third from the luminosity uncertainty and the fourth from the branching-ratio uncertainties. For charm quarks, the second (sys) error is from the extrapolation, the third is from the luminosity uncertainty and the fourth is from the Fragmentation Function uncertainties. Third column: value of <pT> of prompt D0 mesons. The first uncertainty is statistical, the second is the systematic uncertainty.

More…

Centrality dependence of $\mathbf{\psi}$(2S) suppression in p-Pb collisions at $\mathbf{\sqrt{{\textit s}_{\rm NN}}}$ = 5.02 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
JHEP 06 (2016) 050, 2016.
Inspire Record 1426826 DOI 10.17182/hepdata.73306

The inclusive production of the $\psi$(2S) charmonium state was studied as a function of centrality in p-Pb collisions at the nucleon-nucleon center of mass energy $\sqrt{s_{\rm NN}}$ = 5.02 TeV at the CERN LHC. The measurement was performed with the ALICE detector in the center of mass rapidity ranges $-4.46

7 data tables

Centrality-differential cross section dsigma_JPsi/dy in the backward and forward rapidity ranges (-4.46<y_cms<-2.96 and 2.03<y_cms<3.53). The first uncertainty is statistical, the second is a systematic one. The third uncertainty is a systematic uncertainty fully correlated over centrality.

Centrality dependence of the Psi(2S)/J/Psi ratio in the backward and forward rapidity ranges (-4.46<y_cms<-2.96 and 2.03<y_cms<3.53). The first uncertainty is statistical, the second is a systematic one. The third systematic uncertainty is fully correlated over centrality.

Centrality dependence of the (Psi(2S)/J/Psi)_pA/(Psi(2S)/J/Psi)_pp double ratio in the backward and forward rapidity range (-4.46<y_cms<-2.96 and 2.03<y_cms<3.53). The first uncertainty is statistical, the second one is a systematic one. The third systematic uncertainty is fully correlated over centrality, but uncorrelated versus rapidity, while the fourth uncertainty is fully correlated over centrality and over rapidity.

More…

Measurement of D-meson production versus multiplicity in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV

The ALICE collaboration Adam, J. ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
JHEP 08 (2016) 078, 2016.
Inspire Record 1423072 DOI 10.17182/hepdata.73775

The measurement of prompt D-meson production as a function of multiplicity in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV with the ALICE detector at the LHC is reported. D$^0$, D$^+$ and D$^{*+}$ mesons are reconstructed via their hadronic decay channels in the centre-of-mass rapidity range $-0.96< y_{\mathrm{cms}}<0.04$ and transverse momentum interval $1

5 data tables

Average $Q_{\rm pPb}$ of D$^{0}$, D$^{+}$ and D*$^{+}$ mesons for the sum of particles and antiparticles in several multiplicity and PT(D) intervals for p-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV as a function of the multiplicity at central rapidity evaluated with the ZNA estimator. The values are reported together with their uncertainties, which are quoted as statistical followed by systematic uncertainties. Normalisation uncertainty is not quoted and amounts to $\pm 0.07$, $\pm 0.05$, $\pm 0.07$ and $\pm 0.08$ for the 0-20%, 20-40%, 40-60% and 60-100% intervals, respectively.

Average $Q_{\rm pPb}$ of D$^{0}$, D$^{+}$ and D*$^{+}$ mesons for the sum of particles and antiparticles in several multiplicity and PT(D) intervals for p-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV as a function of the multiplicity at central rapidity evaluated with the CL1 estimator. The values are reported together with their uncertainties, which are quoted as statistical followed by systematic uncertainties. Normalisation uncertainty is not quoted and amounts to $\pm 0.05$, $\pm 0.05$, $\pm 0.07$ and $\pm 0.23$ for the 0-20%, 20-40%, 40-60% and 60-100% intervals, respectively.

Average $Q_{\rm pPb}$ of D$^{0}$, D$^{+}$ and D*$^{+}$ mesons for the sum of particles and antiparticles in several multiplicity and PT(D) intervals for p-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV as a function of the multiplicity at central rapidity evaluated with the V0A estimator. The values are reported together with their uncertainties, which are quoted as statistical followed by systematic uncertainties. Normalisation uncertainty is not quoted and amounts to $\pm 0.05$, $\pm 0.05$, $\pm 0.06$ and $\pm 0.22$ for the 0-20%, 20-40%, 40-60% and 60-100% intervals, respectively.

More…

Production of K$^{*}$(892)$^{0}$ and $\phi$(1020) in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Eur.Phys.J.C 76 (2016) 245, 2016.
Inspire Record 1418181 DOI 10.17182/hepdata.72720

The production of K$^{*}$(892)$^{0}$ and $\phi$(1020) mesons has been measured in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV. K$^{*0}$ and $\phi$ are reconstructed via their decay into charged hadrons with the ALICE detector in the rapidity range $-0.5 < y <0$. The transverse momentum spectra, measured as a function of the multiplicity, have p$_{\mathrm{T}}$ range from 0 to 15 GeV/$c$ for K$^{*0}$ and from 0.3 to 21 GeV/$c$ for $\phi$. Integrated yields, mean transverse momenta and particle ratios are reported and compared with results in pp collisions at $\sqrt{s}$ = 7 TeV and Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 2.76 TeV. In Pb-Pb and p-Pb collisions, K$^{*0}$ and $\phi$ probe the hadronic phase of the system and contribute to the study of particle formation mechanisms by comparison with other identified hadrons. For this purpose, the mean transverse momenta and the differential proton-to-$\phi$ ratio are discussed as a function of the multiplicity of the event. The short-lived K$^{*0}$ is measured to investigate re-scattering effects, believed to be related to the size of the system and to the lifetime of the hadronic phase.

30 data tables

Average charged particle pseudo-rapidity density, $\langle\mathrm{d}N_{\rm ch}/\mathrm{d}\eta_{\mathrm{lab}}\rangle$, measured at mid-rapidity in visible cross section event classes and average number of colliding nucleons, $\langle\mathrm{N_{coll}}\rangle$. Multiplicity classes are defined using the V0A estimator; values for $\langle\mathrm{d}N_{\rm ch}/\mathrm{d}\eta_{\mathrm{lab}}\rangle$ are corrected for vertexing and trigger efficiency. Since statistical uncertainties are negligible, only total systematic uncertainties are reported.

$p_{\rm T}$-differential yield of (K$^{*0}$ + $\overline{K^{*0}}$)/2 in p-Pb collisions with centre-of-mass energy/nucleon=5.02 TeV (NSD). Additional systematic error: +- 3.1% (normalization).

$p_{\rm T}$-differential yield of (K$^{*0}$ + $\overline{K^{*0}}$)/2 in p-Pb collisions with centre-of-mass energy/nucleon=5.02 TeV (0-20% multiplicity class).

More…