Showing 10 of 669 results
A measurement of novel event shapes quantifying the isotropy of collider events is performed in 140 fb$^{-1}$ of proton-proton collisions with $\sqrt s=13$ TeV centre-of-mass energy recorded with the ATLAS detector at CERN's Large Hadron Collider. These event shapes are defined as the Wasserstein distance between collider events and isotropic reference geometries. This distance is evaluated by solving optimal transport problems, using the 'Energy-Mover's Distance'. Isotropic references with cylindrical and circular symmetries are studied, to probe the symmetries of interest at hadron colliders. The novel event-shape observables defined in this way are infrared- and collinear-safe, have improved dynamic range and have greater sensitivity to isotropic radiation patterns than other event shapes. The measured event-shape variables are corrected for detector effects, and presented in inclusive bins of jet multiplicity and the scalar sum of the two leading jets' transverse momenta. The measured distributions are provided as inputs to future Monte Carlo tuning campaigns and other studies probing fundamental properties of QCD and the production of hadronic final states up to the TeV-scale.
IRing2 for HT2>=500 GeV, NJets>=2
IRing2 for HT2>=500 GeV, NJets>=3
IRing2 for HT2>=500 GeV, NJets>=4
IRing2 for HT2>=500 GeV, NJets>=5
IRing2 for HT2>=1000 GeV, NJets>=2
IRing2 for HT2>=1000 GeV, NJets>=3
IRing2 for HT2>=1000 GeV, NJets>=4
IRing2 for HT2>=1000 GeV, NJets>=5
IRing2 for HT2>=1500 GeV, NJets>=2
IRing2 for HT2>=1500 GeV, NJets>=3
IRing2 for HT2>=1500 GeV, NJets>=4
IRing2 for HT2>=1500 GeV, NJets>=5
IRing128 for HT2>=500 GeV, NJets>=2
IRing128 for HT2>=500 GeV, NJets>=3
IRing128 for HT2>=500 GeV, NJets>=4
IRing128 for HT2>=500 GeV, NJets>=5
IRing128 for HT2>=1000 GeV, NJets>=2
IRing128 for HT2>=1000 GeV, NJets>=3
IRing128 for HT2>=1000 GeV, NJets>=4
IRing128 for HT2>=1000 GeV, NJets>=5
IRing128 for HT2>=1500 GeV, NJets>=2
IRing128 for HT2>=1500 GeV, NJets>=3
IRing128 for HT2>=1500 GeV, NJets>=4
IRing128 for HT2>=1500 GeV, NJets>=5
ICyl16 for HT2>=500 GeV, NJets>=2
ICyl16 for HT2>=500 GeV, NJets>=3
ICyl16 for HT2>=500 GeV, NJets>=4
ICyl16 for HT2>=500 GeV, NJets>=5
ICyl16 for HT2>=1000 GeV, NJets>=2
ICyl16 for HT2>=1000 GeV, NJets>=3
ICyl16 for HT2>=1000 GeV, NJets>=4
ICyl16 for HT2>=1000 GeV, NJets>=5
ICyl16 for HT2>=1500 GeV, NJets>=2
ICyl16 for HT2>=1500 GeV, NJets>=3
ICyl16 for HT2>=1500 GeV, NJets>=4
ICyl16 for HT2>=1500 GeV, NJets>=5
IRing2 covariance for HT2>=500 GeV, NJets>=2 (Table 1)
IRing2 covariance for HT2>=500 GeV, NJets>=3 (Table 2)
IRing2 covariance for HT2>=500 GeV, NJets>=4 (Table 3)
IRing2 covariance for HT2>=500 GeV, NJets>=5 (Table 4)
IRing2 covariance for HT2>=1000 GeV, NJets>=2 (Table 5)
IRing2 covariance for HT2>=1000 GeV, NJets>=3 (Table 6)
IRing2 covariance for HT2>=1000 GeV, NJets>=4 (Table 7)
IRing2 covariance for HT2>=1000 GeV, NJets>=5 (Table 8)
IRing2 covariance for HT2>=1500 GeV, NJets>=2 (Table 9)
IRing2 covariance for HT2>=1500 GeV, NJets>=3 (Table 10)
IRing2 covariance for HT2>=1500 GeV, NJets>=4 (Table 11)
IRing2 covariance for HT2>=1500 GeV, NJets>=5 (Table 12)
IRing128 covariance for HT2>=500 GeV, NJets>=2 (Table 13)
IRing128 covariance for HT2>=500 GeV, NJets>=3 (Table 14)
IRing128 covariance for HT2>=500 GeV, NJets>=4 (Table 15)
IRing128 covariance for HT2>=500 GeV, NJets>=5 (Table 16)
IRing128 covariance for HT2>=1000 GeV, NJets>=2 (Table 17)
IRing128 covariance for HT2>=1000 GeV, NJets>=3 (Table 18)
IRing128 covariance for HT2>=1000 GeV, NJets>=4 (Table 19)
IRing128 covariance for HT2>=1000 GeV, NJets>=5 (Table 20)
IRing128 covariance for HT2>=1500 GeV, NJets>=2 (Table 21)
IRing128 covariance for HT2>=1500 GeV, NJets>=3 (Table 22)
IRing128 covariance for HT2>=1500 GeV, NJets>=4 (Table 23)
IRing128 covariance for HT2>=1500 GeV, NJets>=5 (Table 24)
ICyl16 covariance for HT2>=500 GeV, NJets>=2 (Table 25)
ICyl16 covariance for HT2>=500 GeV, NJets>=3 (Table 26)
ICyl16 covariance for HT2>=500 GeV, NJets>=4 (Table 27)
ICyl16 covariance for HT2>=500 GeV, NJets>=5 (Table 28)
ICyl16 covariance for HT2>=1000 GeV, NJets>=2 (Table 29)
ICyl16 covariance for HT2>=1000 GeV, NJets>=3 (Table 30)
ICyl16 covariance for HT2>=1000 GeV, NJets>=4 (Table 31)
ICyl16 covariance for HT2>=1000 GeV, NJets>=5 (Table 32)
ICyl16 covariance for HT2>=1500 GeV, NJets>=2 (Table 33)
ICyl16 covariance for HT2>=1500 GeV, NJets>=3 (Table 34)
ICyl16 covariance for HT2>=1500 GeV, NJets>=4 (Table 35)
ICyl16 covariance for HT2>=1500 GeV, NJets>=5 (Table 36)
IRing2 covariance, complete
1-IRing128 covariance, complete
1-ICyl16 covariance, complete
$Z$ boson events at the Large Hadron Collider can be selected with high purity and are sensitive to a diverse range of QCD phenomena. As a result, these events are often used to probe the nature of the strong force, improve Monte Carlo event generators, and search for deviations from Standard Model predictions. All previous measurements of $Z$ boson production characterize the event properties using a small number of observables and present the results as differential cross sections in predetermined bins. In this analysis, a machine learning method called OmniFold is used to produce a simultaneous measurement of twenty-four $Z$+jets observables using $139$ fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV collected with the ATLAS detector. Unlike any previous fiducial differential cross-section measurement, this result is presented unbinned as a dataset of particle-level events, allowing for flexible re-use in a variety of contexts and for new observables to be constructed from the twenty-four measured observables.
Differential cross-section in bins of dimuon $p_\text{T}$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of dimuon rapidity. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading muon $p_\mathrm{T]$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading muon $p_\mathrm{T]$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading muon $\eta$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading muon $\eta$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading muon $\phi$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading muon $\phi$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet $p_\mathrm{T]$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading charged particle jet $p_\mathrm{T]$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet rapidity. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading charged particle jet rapidity. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet azimuth. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading charged particle jet azimuth. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet mass. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading charged particle jet mass. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet constituent multiplicity. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading charged particle jet constituent multiplicity. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet $\tau_1$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading charged particle jet $\tau_1$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet $\tau_2$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading charged particle jet $\tau_2$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet $\tau_3$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading charged particle jet $\tau_3$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet $\tau_{21}$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of $\Delta R$ between the leading charged particle jet and the dilepton system. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
A measurement of observables sensitive to effects of colour reconnection in top-quark pair-production events is presented using 139 fb$^{-1}$ of 13$\,$TeV proton-proton collision data collected by the ATLAS detector at the LHC. Events are selected by requiring exactly one isolated electron and one isolated muon with opposite charge and two or three jets, where exactly two jets are required to be $b$-tagged. For the selected events, measurements are presented for the charged-particle multiplicity, the scalar sum of the transverse momenta of the charged particles, and the same scalar sum in bins of charged-particle multiplicity. These observables are unfolded to the stable-particle level, thereby correcting for migration effects due to finite detector resolution, acceptance and efficiency effects. The particle-level measurements are compared with different colour reconnection models in Monte Carlo generators. These measurements disfavour some of the colour reconnection models and provide inputs to future optimisation of the parameters in Monte Carlo generators.
Naming convention for the observables at different levels of the analysis. At the background-subtracted level the contributions of tracks from pile-up collisions and tracks from secondary vertices are subtracted. At the corrected level the tracking-efficiency correction (TEC) is applied. The observables at particle level are the analysis results.
The $\chi^2$ and NDF for measured normalised differential cross-sections obtained by comparing the different predictions with the unfolded data. Global($n_\text{ch},\Sigma_{n_{\text{ch}}} p_{\text{T}}$) denotes the scenario in which the covariance matrix is built including the correlations of systematic uncertainties between the two observables $n_{\text{ch}}$ and $\Sigma_{n_{\text{ch}}} p_{\text{T}}$
Normalised differential cross-section as a function of $n_\text{ch}$.
Normalised differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$.
Normalised double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$.
Normalised double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$.
Normalised double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 40 \leq n_\text{ch} < 60$.
Normalised double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 60 \leq n_\text{ch} < 80$.
Normalised double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n\text{ch}$ in $ n_\text{ch} \geq 80$.
The $\chi^2$ and NDF for measured absolute differential cross-sections obtained by comparing the different predictions with the unfolded data. Global($n_\text{ch},\Sigma_{n_{\text{ch}}} p_{\text{T}}$) denotes the scenario in which the covariance matrix is built including the correlations of systematic uncertainties between the two observables $n_{\text{ch}}$ and $\Sigma_{n_{\text{ch}}} p_{\text{T}}$
Absolute differential cross-section as a function of $n_\text{ch}$.
Absolute differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$.
Absolute double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$.
Absolute double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$.
Absolute double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 40 \leq n_\text{ch} < 60$.
Absolute double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 60 \leq n_\text{ch} < 80$.
Absolute double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n\text{ch}$ in $ n_\text{ch} \geq 80$.
A search for supersymmetry in events with four or more charged leptons (electrons, muons and $\tau$-leptons) is presented. The analysis uses a data sample corresponding to $139\,\mbox{fb\(^{-1}\)}$ of proton-proton collisions delivered by the Large Hadron Collider at $\sqrt{s}=13$ TeV and recorded by the ATLAS detector. Four-lepton signal regions with up to two hadronically decaying $\tau$-leptons are designed to target several supersymmetric models, while a general five-lepton signal region targets any new physics phenomena leading to a final state with five charged leptons. Data yields are consistent with Standard Model expectations and results are used to set upper limits on contributions from processes beyond the Standard Model. Exclusion limits are set at the 95% confidence level in simplified models of general gauge-mediated supersymmetry, excluding higgsino masses up to $540$ GeV. In $R$-parity-violating simplified models with decays of the lightest supersymmetric particle to charged leptons, lower limits of $1.6$ TeV, $1.2$ TeV, and $2.5$ TeV are placed on wino, slepton and gluino masses, respectively.
The $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution in SR0-ZZ$^{\mathrm{loose}}$ and SR0-ZZ$^{\mathrm{tight}}$ for events passing the signal region requirements except the $E_{\mathrm{T}}^{\mathrm{miss}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $E_{\mathrm{T}}^{\mathrm{miss}}$ selections in the signal regions.
The $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution in SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$ and SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{tight}}$ for events passing the signal region requirements except the $E_{\mathrm{T}}^{\mathrm{miss}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $E_{\mathrm{T}}^{\mathrm{miss}}$ selections in the signal regions.
The $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution in SR5L. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $m_{\mathrm{eff}}$ distribution in SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$ and SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$ and SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$ and SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR0$_{\mathrm{breq}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR1$_{\mathrm{breq}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR2$_{\mathrm{breq}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
Expected 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ bserved 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed upper limit on the signal cross section in fb for the wino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the wino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the slepton/sneutrino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the slepton/sneutrino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the gluino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the gluino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the higgsino GGM models. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Best expected SR for the wino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the wino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the slepton/sneutrino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the slepton/sneutrino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the gluino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the gluino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the higgsino GGM models. A value of 6 corresponds to SR0-ZZ$^{\mathrm{loose}}$, 7 corresponds to SR0-ZZ$^{\mathrm{tight}}$, 8 corresponds to SR0-ZZ$^{\mathrm{loose}}_{\mathrm{bveto}}$, and 9 corresponds to SR0-ZZ$^{\mathrm{tight}}_{\mathrm{bveto}}$.
Acceptance across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the GGM Higgsino grid for SR0-ZZ$^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the GGM Higgsino grid for SR0-ZZ$^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the GGM Higgsino grid for SR0-ZZ$^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the GGM Higgsino grid for SR0-ZZ$^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the GGM Higgsino grid for SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the GGM Higgsino grid for SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the GGM Higgsino grid for SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the GGM Higgsino grid for SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR0-ZZ$^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR0-ZZ$^{\mathrm{tight}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR5L. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the taus leptons in distribution in SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light taus in distribution in SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with four light leptons and a Z veto. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with four light leptons and one Z candidate. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with four light leptons and two Z candidates. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with exactly five light leptons. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with three light leptons and one tau and a Z veto. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with three light leptons and one tau and one Z candidate. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with two light leptons and two taus and a Z veto. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with two light leptons and two taus and one Z candidate. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
Cutflow event yields in regions SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$, SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$, SR0$_{\mathrm{breq}}$, and SR5L for RPV models with the $\lambda_{12k}\neq 0$ coupling. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 139\,\mbox{fb\(^{-1}\)}$. The preliminary event reduction is a centralized stage where at least two electrons/muons with uncalibrated $p_{\mathrm{T}} >$ 9 GeV are required.
Cutflow event yields in regions SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$, SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$, and SR1$_{\mathrm{breq}}$ for RPV models with the $\lambda_{i33}\neq 0$ coupling. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 139\,\mbox{fb\(^{-1}\)}$. The preliminary event reduction is a centralized stage where at least two electrons/muons with uncalibrated $p_{\mathrm{T}} >$ 9 GeV are required.
Cutflow event yields in regions SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and SR2$_{\mathrm{breq}}$ for RPV models with the $\lambda_{i33}\neq 0$ coupling. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 139\,\mbox{fb\(^{-1}\)}$. The preliminary event reduction is a centralized stage where at least two electrons/muons with uncalibrated $p_{\mathrm{T}} >$ 9 GeV are required.
Cutflow event yields in regions SR0-ZZ$^{\mathrm{loose}}$, SR0-ZZ$^{\mathrm{tight}}$, SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$, SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{tight}}$, and SR5L the higgsino GGM RPC model with BR($\tilde{\chi}^{0}_1 \rightarrow Z \tilde{G}$) = 50% and higgsino masses of 200 GeV, or BR($\tilde{\chi}^{0}_1 \rightarrow Z \tilde{G}$) = 100% and higgsino masses of 300 GeV. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 139\,\mbox{fb\(^{-1}\)}$. The generator filter is a selection of $\geq$4e/$\mu$/$\tau_{\mathrm{had-vis}}$ leptons with $p_{\mathrm{T}}(e,\mu)>4$GeV, $p_{\mathrm{T}}(\tau_{\mathrm{had-vis}})>15$GeV and $|\eta|<2.8$ and is applied during the MC generation of the simulated events. The preliminary event reduction is a centralized stage where at least two electrons/muons with uncalibrated $p_{\mathrm{T}} > 9$ GeV are required.
Measurements of both the inclusive and differential production cross sections of a top-quark-antiquark pair in association with a $Z$ boson ($t\bar{t}Z$) are presented. The measurements are performed by targeting final states with three or four isolated leptons (electrons or muons) and are based on $\sqrt{s} = 13$ TeV proton-proton collision data with an integrated luminosity of 139 fb$^{-1}$, recorded from 2015 to 2018 with the ATLAS detector at the CERN Large Hadron Collider. The inclusive cross section is measured to be $\sigma_{t\bar{t}Z} = 0.99 \pm 0.05$ (stat.) $\pm 0.08$ (syst.) pb, in agreement with the most precise theoretical predictions. The differential measurements are presented as a function of a number of kinematic variables which probe the kinematics of the $t\bar{t}Z$ system. Both absolute and normalised differential cross-section measurements are performed at particle and parton levels for specific fiducial volumes and are compared with theoretical predictions at different levels of precision, based on a $\chi^{2}/$ndf and $p$-value computation. Overall, good agreement is observed between the unfolded data and the predictions.
The measured $t\bar{t}\text{Z}$ cross-section value and its uncertainty based on the fit results from the combined trilepton and tetralepton channels. The value corresponds to the phase-space region where the difermion mass from the Z boson decay lies in the range $70 < m_{f\bar{f}} < 110$ GeV.
List of relative uncertainties of the measured inclusive $t\bar{t}\text{Z}$ cross section from the combined fit. The uncertainties are symmetrised for presentation and grouped into the categories described in the text. The quadratic sum of the individual uncertainties is not equal to the total uncertainty due to correlations introduced by the fit.
The definitions of the trilepton signal regions: for the inclusive measurement, a combination of the regions with pseudo-continuous $b$-tagging 3$\ell$-Z-1$b$4$j$-PCBT and 3$\ell$-Z-2$b$3$j$-PCBT is used, whereas for the differential measurement, only the region 3$\ell$-Z-2$b$3$j$, with a fixed $b$-tagging WP is employed.
The definitions of the four tetralepton signal regions. The regions are defined to target different $b$-jet multiplicities and flavour combinations of the non-Z leptons.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 3$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 4$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 3$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 4$\ell$ channel.
A search for dark-matter particles in events with large missing transverse momentum and a Higgs boson candidate decaying into two photons is reported. The search uses $139$ fb$^{-1}$ of proton-proton collision data collected at $\sqrt{s}=13$ TeV with the ATLAS detector at the CERN LHC between 2015 and 2018. No significant excess of events over the Standard Model predictions is observed. The results are interpreted by extracting limits on three simplified models that include either vector or pseudoscalar mediators and predict a final state with a pair of dark-matter candidates and a Higgs boson decaying into two photons.
The $E^{miss}_{T}$ distribution of data and MC after the diphoton selection.
The observed exclusion contor for the $Z^{\prime}_{B}$ model in the $m_{\chi}$-$m_{Z^{\prime}_{B}}$ plane.
The expected exclusion contor for the $Z^{\prime}_{B}$ model in the $m_{\chi}$-$m_{Z^{\prime}_{B}}$ plane.
The +1 $\sigma$ band of the observed exclusion contor for the $Z^{\prime}_{B}$ model in the $m_{\chi}$-$m_{Z^{\prime}_{B}}$ plane.
The -1 $\sigma$ band of the observed exclusion contor for the $Z^{\prime}_{B}$ model in the $m_{\chi}$-$m_{Z^{\prime}_{B}}$ plane.
A comparison of the inferred limits to the constraints from direct detection experiments on the spin-independent DM--nucleon cross section in the context of the $Z'_B$ simplified model with vector couplings. Limits are shown at 90% CL.
The observed exclusion contor for the $Z^{\prime}$-2HDM model in the $m_{A}$-$m_{Z^{\prime}}$ plane.
The expected exclusion contor for the $Z^{\prime}$-2HDM model in the $m_{A}$-$m_{Z^{\prime}}$ plane.
The +1 $\sigma$ band of the observed exclusion contor for the $m_{A}$-$Z^{\prime}$-2HDM model in the $m_{Z^{\prime}}$ plane.
The -1 $\sigma$ band of the observed exclusion contor for the $m_{A}$-$Z^{\prime}$-2HDM model in the $m_{Z^{\prime}}$ plane.
The observed exclusion contor for the 2HDM-a model in the $m_{A}$-$m_{a}$ plane.
The expected exclusion contor for the 2HDM-a model in the $m_{A}$-$m_{a}$ plane.
The +1 $\sigma$ band of the observed exclusion contor for the 2HDM-a model in the $m_{A}$-$m_{a}$ plane.
The -1 $\sigma$ band of the observed exclusion contor for the 2HDM-a model in the $m_{A}$-$m_{a}$ plane.
The observed exclusion contor for the 2HDM-a model in the $tan\beta$-$m_{a}$ plane.
The expected exclusion contor for the 2HDM-a model in the $tan\beta$-$m_{a}$ plane.
The +1 $\sigma$ band of the observed exclusion contor for the 2HDM-a model in the $tan\beta$-$m_{a}$ plane.
The -1 $\sigma$ band of the observed exclusion contor for the 2HDM-a model in the $tan\beta$-$m_{a}$ plane.
The exclusion limits at 95% CL for the 2HDM+a model as a function of $\sin \theta$ for $m_{A,H^{\pm},H}$= 600GeV, $m_a$ = 200GeV, $\tan \beta$ = 1.0$.
The exclusion limits at 95% CL for the 2HDM+a model as a function of $\sin \theta$ for $m_{A,H^{\pm},H}$= 1000GeV, $m_a$ = 350GeV, $\tan \beta$ = 1.0$.
Breakdown of the dominant systematic uncertainties.
Event yields in the range of 120 $<m_{\gamma\gamma}<$ 130 GeV for data, signal models, the SM Higgs boson background and non-resonant background in each analysis category, for an integrated luminosity of $139$fb$^{-1}$.
Detailed background contributions from the SM Higgs boson and continuum background for each cut
Detailed contributions from the signals for each cut.
Acceptance times efficiency for several signals in each category.
Differential cross-section measurements are presented for the electroweak production of two jets in association with a $Z$ boson. These measurements are sensitive to the vector-boson fusion production mechanism and provide a fundamental test of the gauge structure of the Standard Model. The analysis is performed using proton-proton collision data collected by ATLAS at $\sqrt{s}$=13 TeV and with an integrated luminosity of 139 fb$^{-1}$. The differential cross-sections are measured in the $Z\rightarrow \ell^+\ell^-$ decay channel ($\ell=e,\mu$) as a function of four observables: the dijet invariant mass, the rapidity interval spanned by the two jets, the signed azimuthal angle between the two jets, and the transverse momentum of the dilepton pair. The data are corrected for the effects of detector inefficiency and resolution and are sufficiently precise to distinguish between different state-of-the-art theoretical predictions calculated using Powheg+Pythia8, Herwig7+Vbfnlo and Sherpa 2.2. The differential cross-sections are used to search for anomalous weak-boson self-interactions using a dimension-six effective field theory. The differential cross-section as a function of the signed azimuthal angle between the two jets is found to be particularly sensitive to the interference between the Standard Model and dimension-six scattering amplitudes and provides a direct test of charge-conjugation and parity invariance in the weak-boson self-interactions.
Differential cross-sections for EW $Zjj$ production as a function of $m_{jj}$ with breakdown of associated uncertainties. The statistical uncertainty is correlated across bins according to the statistical cross correlation matrix presented in Table 21.
Differential cross-sections for EW $Zjj$ production as a function of $|\Delta y_{jj}|$ with breakdown of associated uncertainties. The statistical uncertainty is correlated across bins according to the statistical cross correlation matrix presented in Table 21.
Differential cross-sections for EW $Zjj$ production as a function of $p_{\mathrm{T},\ell\ell}$ with breakdown of associated uncertainties. The statistical uncertainty is correlated across bins according to the statistical cross correlation matrix presented in Table 21.
Differential cross-sections for EW $Zjj$ production as a function of $\Delta\phi_{jj}$ with breakdown of associated uncertainties. The statistical uncertainty is correlated across bins according to the statistical cross correlation matrix presented in Table 21.
Differential cross-sections for inclusive $Zjj$ production in the EW $Zjj$ signal region ($N^\mathrm{gap}_\mathrm{jets}=0$, $\xi_Z < 0.5$) as a function of $m_{jj}$ with breakdown of associated uncertainties.
Differential cross-sections for inclusive $Zjj$ production in the EW $Zjj$ signal region ($N^\mathrm{gap}_\mathrm{jets}=0$, $\xi_Z < 0.5$) as a function of $\Delta y_{jj}$ with breakdown of associated uncertainties.
Differential cross-sections for inclusive $Zjj$ production in the EW $Zjj$ signal region ($N^\mathrm{gap}_\mathrm{jets}=0$, $\xi_Z < 0.5$) as a function of $p_{\mathrm{T},\ell\ell}$ with breakdown of associated uncertainties.
Differential cross-sections for inclusive $Zjj$ production in the EW $Zjj$ signal region ($N^\mathrm{gap}_\mathrm{jets}=0$, $\xi_Z < 0.5$) as a function of $\Delta\phi_{jj}$ with breakdown of associated uncertainties.
Differential cross-sections for inclusive $Zjj$ production in control region CRa ($N^\mathrm{gap}_\mathrm{jets} \geq 1$, $\xi_Z < 0.5$) as a function of $m_{jj}$ with breakdown of associated uncertainties.
Differential cross-sections for inclusive $Zjj$ production in control region CRa ($N^\mathrm{gap}_\mathrm{jets} \geq 1$, $\xi_Z < 0.5$) as a function of $\Delta y_{jj}$ with breakdown of associated uncertainties.
Differential cross-sections for inclusive $Zjj$ production in control region CRa ($N^\mathrm{gap}_\mathrm{jets} \geq 1$, $\xi_Z < 0.5$) as a function of $p_{\mathrm{T},\ell\ell}$ with breakdown of associated uncertainties.
Differential cross-sections for inclusive $Zjj$ production in control region CRa ($N^\mathrm{gap}_\mathrm{jets} \geq 1$, $\xi_Z < 0.5$) as a function of $\Delta\phi_{jj}$ with breakdown of associated uncertainties.
Differential cross-sections for inclusive $Zjj$ production in control region CRb ($N^\mathrm{gap}_\mathrm{jets} \geq 1$, $\xi_Z > 0.5$) as a function of $m_{jj}$ with breakdown of associated uncertainties.
Differential cross-sections for inclusive $Zjj$ production in control region CRb ($N^\mathrm{gap}_\mathrm{jets} \geq 1$, $\xi_Z > 0.5$) as a function of $\Delta y_{jj}$ with breakdown of associated uncertainties.
Differential cross-sections for inclusive $Zjj$ production in control region CRb ($N^\mathrm{gap}_\mathrm{jets} \geq 1$, $\xi_Z > 0.5$) as a function of $p_{\mathrm{T},\ell\ell}$ with breakdown of associated uncertainties.
Differential cross-sections for inclusive $Zjj$ production in control region CRb ($N^\mathrm{gap}_\mathrm{jets} \geq 1$, $\xi_Z > 0.5$) as a function of $\Delta\phi_{jj}$ with breakdown of associated uncertainties.
Differential cross-sections for inclusive $Zjj$ production in control region CRc ($N^\mathrm{gap}_\mathrm{jets} = 0$, $\xi_Z > 0.5$) as a function of $m_{jj}$ with breakdown of associated uncertainties.
Differential cross-sections for inclusive $Zjj$ production in control region CRc ($N^\mathrm{gap}_\mathrm{jets} = 0$, $\xi_Z > 0.5$) as a function of $\Delta y_{jj}$ with breakdown of associated uncertainties.
Differential cross-sections for inclusive $Zjj$ production in control region CRc ($N^\mathrm{gap}_\mathrm{jets} = 0$, $\xi_Z > 0.5$) as a function of $p_{\mathrm{T},\ell\ell}$ with breakdown of associated uncertainties.
Differential cross-sections for inclusive $Zjj$ production in control region CRc ($N^\mathrm{gap}_\mathrm{jets} = 0$, $\xi_Z > 0.5$) as a function of $\Delta\phi_{jj}$ with breakdown of associated uncertainties.
Statistical correlation between bins of the differential cross-section measurements of EW $Zjj$ production in the signal region ($N^\mathrm{gap}_\mathrm{jets} = 0$, $\xi_Z < 0.5$). The associated measured central values, statistical uncertainty magnitude and bin ranges are presented in Tables 1-4. The bins are presented in order such that for example mjj_bin_1 spans $m_{jj} \in (1000,1500)$ GeV (see Table 1), while pT_ll_bin7 spans $p_\mathrm{T}^{ll} \in (200,275)$ GeV (see Table 3).
Properties of the underlying-event in $pp$ interactions are investigated primarily via the strange hadrons $K_{S}^{0}$, $\Lambda$ and $\bar\Lambda$, as reconstructed using the ATLAS detector at the LHC in minimum-bias $pp$ collision data at $\sqrt{s} = 13$ TeV. The hadrons are reconstructed via the identification of the displaced two-particle vertices corresponding to the decay modes $K_{S}^{0}\rightarrow\pi^+\pi^-$, $\Lambda\rightarrow\pi^-p$ and $\bar\Lambda\rightarrow\pi^+\bar{p}$. These are used in the construction of underlying-event observables in azimuthal regions computed relative to the leading charged-particle jet in the event. None of the hadronisation and underlying-event physics models considered can describe the data over the full kinematic range considered. Events with a leading charged-particle jet in the range of $10 < p_T \leq 40$ GeV are studied using the number of prompt charged particles in the transverse region. The ratio $N(\Lambda + \bar\Lambda)/N(K_{S}^{0})$ as a function of the number of such charged particles varies only slightly over this range. This disagrees with the expectations of some of the considered Monte Carlo models.
Mean multiplicity of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the away region vs. leading-jet $p_{T}$
Mean multiplicity of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the towards region vs. leading-jet $p_{T}$
Mean multiplicity of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the transverse region vs. leading-jet $p_{T}$
Mean scalar sum-$p_{T}$ of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the away region vs. leading-jet $p_{T}$
Mean scalar sum-$p_{T}$ of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the towards region vs. leading-jet $p_{T}$
Mean scalar sum-$p_{T}$ of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the transverse region vs. leading-jet $p_{T}$
Ratio of the multiplicity of $K^{0}_{S}$ to prompt charged particles in the away region vs. leading-jet $p_{T}$
Ratio of the multiplicity of $K^{0}_{S}$ to prompt charged particles in the towards region vs. leading-jet $p_{T}$
Ratio of the multiplicity of $K^{0}_{S}$ to prompt charged particles in the transverse region vs. leading-jet $p_{T}$
Ratio of the scalar sum-pt of $K^{0}_{S}$ to prompt charged particles in the away region vs. leading-jet $p_{T}$
Ratio of the scalar sum-pt of $K^{0}_{S}$ to prompt charged particles in the towards region vs. leading-jet $p_{T}$
Ratio of the scalar sum-pt of $K^{0}_{S}$ to prompt charged particles in the transverse region vs. leading-jet $p_{T}$
Mean-$p_{T}$ of $K^{0}_{S}$ in the away region vs. leading-jet $p_{T}$
Mean-$p_{T}$ of $K^{0}_{S}$ in the towards region vs. leading-jet $p_{T}$
Mean-$p_{T}$ of $K^{0}_{S}$ in the transverse region vs. leading-jet $p_{T}$
Mean multiplicity of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the away region vs. leading-jet $p_{T}$
Mean multiplicity of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the towards region vs. leading-jet $p_{T}$
Mean multiplicity of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the transverse region vs. leading-jet $p_{T}$
Mean scalar sum-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the away region vs. leading-jet $p_{T}$
Mean scalar sum-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the towards region vs. leading-jet $p_{T}$
Mean scalar sum-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the transverse region vs. leading-jet $p_{T}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the away region vs. leading-jet $p_{T}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the towards region vs. leading-jet $p_{T}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the transverse region vs. leading-jet $p_{T}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the away region vs. leading-jet $p_{T}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the towards region vs. leading-jet $p_{T}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the transverse region vs. leading-jet $p_{T}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the away region vs. leading-jet $p_{T}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the towards region vs. leading-jet $p_{T}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the transverse region vs. leading-jet $p_{T}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the away region vs. leading-jet $p_{T}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the towards region vs. leading-jet $p_{T}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the transverse region vs. leading-jet $p_{T}$
Mean-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ in the away region vs. leading-jet $p_{T}$
Mean-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ in the towards region vs. leading-jet $p_{T}$
Mean-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ in the transverse region vs. leading-jet $p_{T}$
Mean multiplicity of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the away region vs. $N_\textrm{ch,trans}$
Mean multiplicity of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the towards region vs. $N_\textrm{ch,trans}$
Mean multiplicity of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the transverse region vs. $N_\textrm{ch,trans}$
Mean scalar sum-$p_{T}$ of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the away region vs. $N_\textrm{ch,trans}$
Mean scalar sum-$p_{T}$ of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the towards region vs. $N_\textrm{ch,trans}$
Mean scalar sum-$p_{T}$ of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the transverse region vs. $N_\textrm{ch,trans}$
Ratio of the multiplicity of $K^{0}_{S}$ to prompt charged particles in the away region vs. $N_\textrm{ch,trans}$
Ratio of the multiplicity of $K^{0}_{S}$ to prompt charged particles in the towards region vs. $N_\textrm{ch,trans}$
Ratio of the multiplicity of $K^{0}_{S}$ to prompt charged particles in the transverse region vs. $N_\textrm{ch,trans}$
Ratio of the scalar sum-pt of $K^{0}_{S}$ to prompt charged particles in the away region vs. $N_\textrm{ch,trans}$
Ratio of the scalar sum-pt of $K^{0}_{S}$ to prompt charged particles in the towards region vs. $N_\textrm{ch,trans}$
Ratio of the scalar sum-pt of $K^{0}_{S}$ to prompt charged particles in the transverse region vs. $N_\textrm{ch,trans}$
Mean-$p_{T}$ of $K^{0}_{S}$ in the away region vs. $N_\textrm{ch,trans}$
Mean-$p_{T}$ of $K^{0}_{S}$ in the towards region vs. $N_\textrm{ch,trans}$
Mean-$p_{T}$ of $K^{0}_{S}$ in the transverse region vs. $N_\textrm{ch,trans}$
Mean multiplicity of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the away region vs. $N_\textrm{ch,trans}$
Mean multiplicity of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the towards region vs. $N_\textrm{ch,trans}$
Mean multiplicity of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the transverse region vs. $N_\textrm{ch,trans}$
Mean scalar sum-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the away region vs. $N_\textrm{ch,trans}$
Mean scalar sum-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the towards region vs. $N_\textrm{ch,trans}$
Mean scalar sum-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the transverse region vs. $N_\textrm{ch,trans}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the away region vs. $N_\textrm{ch,trans}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the towards region vs. $N_\textrm{ch,trans}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the transverse region vs. $N_\textrm{ch,trans}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the away region vs. $N_\textrm{ch,trans}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the towards region vs. $N_\textrm{ch,trans}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the transverse region vs. $N_\textrm{ch,trans}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the away region vs. $N_\textrm{ch,trans}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the towards region vs. $N_\textrm{ch,trans}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the transverse region vs. $N_\textrm{ch,trans}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the away region vs. $N_\textrm{ch,trans}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the towards region vs. $N_\textrm{ch,trans}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the transverse region vs. $N_\textrm{ch,trans}$
Mean-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ in the away region vs. $N_\textrm{ch,trans}$
Mean-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ in the towards region vs. $N_\textrm{ch,trans}$
Mean-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ in the transverse region vs. $N_\textrm{ch,trans}$
Jet substructure quantities are measured using jets groomed with the soft-drop grooming procedure in dijet events from 32.9 fb$^{-1}$ of $pp$ collisions collected with the ATLAS detector at $\sqrt{s} = 13$ TeV. These observables are sensitive to a wide range of QCD phenomena. Some observables, such as the jet mass and opening angle between the two subjets which pass the soft-drop condition, can be described by a high-order (resummed) series in the strong coupling constant $\alpha_S$. Other observables, such as the momentum sharing between the two subjets, are nearly independent of $\alpha_S$. These observables can be constructed using all interacting particles or using only charged particles reconstructed in the inner tracking detectors. Track-based versions of these observables are not collinear safe, but are measured more precisely, and universal non-perturbative functions can absorb the collinear singularities. The unfolded data are directly compared with QCD calculations and hadron-level Monte Carlo simulations. The measurements are performed in different pseudorapidity regions, which are then used to extract quark and gluon jet shapes using the predicted quark and gluon fractions in each region. All of the parton shower and analytical calculations provide an excellent description of the data in most regions of phase space.
Data from Fig 6a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6c. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6d. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6e. The unfolded $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6f. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 7a. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 7b. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 7c. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 7d. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 7e. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 7f. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 8a. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 8b. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 8c. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 8d. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 8e. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 8f. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 14b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 4b. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 21b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 5a. The unfolded $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 5b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 14c. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14d. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4c. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4d. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5c. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5d. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14e. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14f. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4e. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4f. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5e. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5f. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 14b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 4a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 4b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 5a. The unfolded $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 5b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 14c. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14d. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4c. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4d. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5c. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5d. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14e. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14f. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4e. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4f. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5e. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5f. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 36-40a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 81-85a. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 36-40b. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 81-85b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 36-40c. The unfolded $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 81-85c. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 51-55a. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 101-105a. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 51-55b. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 101-105b. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 51-55c. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 101-105c. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 66-70a. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110a. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 66-70b. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110b. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 66-70c. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110c. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 26-30a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 71-75a. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 26-30b. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 71-75b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 26-30c. The unfolded $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 71-75c. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 41-45a. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 86-90a. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 41-45b. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 86-90b. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 41-45c. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 86-90c. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 56-60a. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 101-105a. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 56-60b. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 101-105b. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 56-60c. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 101-105c. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 31-35a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 76-80a. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 31-35b. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 76-80b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 31-35c. The unfolded $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 76-80c. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 46-50a. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 91-95a. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 46-50b. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 91-95b. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 46-50c. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 91-95c. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 61-65a. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110a. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 61-65b. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110b. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 61-65c. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110c. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 6a. The extracted quark-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15a. Theextracted quark-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 6b. The extracted quark-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15b. The extracted quark-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 6c. The extracted quark-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15c. The extracted quark-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 7a. The extracted quark-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16a. The extracted quark-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 7b. The extracted quark-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16b. The extracted quark-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 7c. The extracted quark-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16c. The extracted quark-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8a. The extracted quark-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17a. The extracted quark-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8b. The extracted quark-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17b. The extracted quark-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8c. The extracted quark-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17c. The extracted quark-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 6a. The extracted gluon-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15a. Theextracted gluon-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 6b. The extracted gluon-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15b. The extracted gluon-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 6c. The extracted gluon-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15c. The extracted gluon-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 7a. The extracted gluon-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16a. The extracted gluon-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 7b. The extracted gluon-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16b. The extracted gluon-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 7c. The extracted gluon-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16c. The extracted gluon-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8a. The extracted gluon-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17a. The extracted gluon-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8b. The extracted gluon-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17b. The extracted gluon-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8c. The extracted gluon-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17c. The extracted gluon-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 99a. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 100a. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 99b. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 100b. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 99c. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 100c. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 101a. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 102a. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 101b. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 102b. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 101c. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 102c. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 103a. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 104a. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 103b. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 104b. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 103c. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 104c. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 105a. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 106a. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 105b. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 106b. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 105c. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 106c. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 107a. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 108a. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 107b. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 108b. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 107c. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 108c. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 109a. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 110a. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 109b. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 110b. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 109c. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 110c. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 111a. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 112a. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 111b. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 112b. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 111c. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 112c. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 113a. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 114a. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 113b. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 114b. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 113c. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 114c. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 115a. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 116a. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 115b. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 116b. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 115c. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 116c. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 99d. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 100d. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 99e. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 100e. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 99f. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 100f. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 101d. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 102d. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 101e. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 102e. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 101f. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 102f. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 103d. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 104d. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 103e. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 104e. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 103f. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 104f. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 105d. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 106d. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 105e. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 106e. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 105f. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 106f. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 107d. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 108d. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 107e. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 108e. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 107f. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 108f. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 109d. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 110d. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 109e. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 110e. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 109f. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 110f. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 111d. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 112d. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 111e. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 112e. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 111f. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 112f. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 113d. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 114d. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 113e. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 114e. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 113f. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 114f. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 115d. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 116d. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 115e. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 116e. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 115f. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 116f. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
This paper presents measurements of top-antitop quark pair ($t\bar{t}$) production in association with additional $b$-jets. The analysis utilises 140 fb$^{-1}$ of proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. Fiducial cross-sections are extracted in a final state featuring one electron and one muon, with at least three or four $b$-jets. Results are presented at the particle level for both integrated cross-sections and normalised differential cross-sections, as functions of global event properties, jet kinematics, and $b$-jet pair properties. Observable quantities characterising $b$-jets originating from the top quark decay and additional $b$-jets are also measured at the particle level, after correcting for detector effects. The measured integrated fiducial cross-sections are consistent with $t\bar{t}b\bar{b}$ predictions from various next-to-leading-order matrix element calculations matched to a parton shower within the uncertainties of the predictions. State-of-the-art theoretical predictions are compared with the differential measurements; none of them simultaneously describes all observables. Differences between any two predictions are smaller than the measurement uncertainties for most observables.
Measured and predicted fiducial cross-section results for additional b-jet production in four phase-space regions. The dashes (–) indicate that the predictions are not available. The differences between the various MC generator predictions are smaller than the size of theoretical uncertainties (20%–50%, not presented here) in the predictions.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least two $b$-jets as a function of the number of $b$-jets compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of the number of $b$-jets compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of the number of $l/c$-jets compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $H_{\text{T}}^{\text{had}}$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $\Delta R_{\text{avg}}^{bb}$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $p_{\text{T}}(b_{1})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $p_{\text{T}}(b_{2})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $p_{\text{T}}(b_{1}^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $p_{\text{T}}(b_{2}^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $p_{\text{T}}(b_{3})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $p_{\text{T}}(b_{1}^{\text{add}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $m(b_{1}b_{2})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $p_{\text{T}}(b_{1}b_{2})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $m(bb^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $p_{\text{T}}(bb^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $\Delta R(e\mu bb^{\text{top}}, b_{1}^{\text{add}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets and at least one $l/c$-jet as a function of $\Delta R(e\mu bb^{\text{top}}, l/c\text{-jet}_{1})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets and at least one $l/c$-jet as a function of $p_{\text{T}}(l/c\text{-jet}_{1})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets and at least one $l/c$-jet as a function of $p_{\text{T}}(l/c\text{-jet}_{1}) - p_{\text{T}}(b_{1}^{\text{add}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $m(bb^{\text{min}\Delta R})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(bb^{\text{min}\Delta R})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $m(bb^{\text{add}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(bb^{\text{add}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $|\eta(b_{3})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $|\eta(b_{1}^{\text{add}})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $\Delta R(b_{1}b_{2})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $m(e\mu bb^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $|\eta(l/c\text{-jet}_{1})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $\Delta\eta_{\text{max}}^{jj}$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $H_{\text{T}}^{\text{all}}$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $m(e\mu b_{1}b_{2})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $|\eta(b_{1})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $|\eta(b_{2})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $|\eta(b_{1}^{\text{top}})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $|\eta(b_{2}^{\text{top}})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{1})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{2})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{1}^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{2}^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{3})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{4})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{1}^{\text{add}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{2}^{\text{add}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $m(b_{1}b_{2})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{1}b_{2})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $m(bb^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(bb^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $H_{\text{T}}^{\text{all}}$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $m(e\mu b_{1}b_{2})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $m(e\mu bb^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $H_{\text{T}}^{\text{had}}$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $\text{min}\Delta R(bb)$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $\Delta R(e\mu bb^{\text{top}}, b_{1}^{\text{add}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $\Delta R_{\text{avg}}^{bb}$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $\Delta\eta_{\text{max}}^{jj}$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of the number of $l/c$-jets compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets and at least one $l/c$-jet as a function of $p_{\text{T}}(l/c\text{-jet}_{1})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets and at least one $l/c$-jet as a function of $|\eta(l/c\text{-jet}_{1})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets and at least one $l/c$-jet as a function of $\Delta R(e\mu bb^{\text{top}}, l/c\text{-jet}_{1})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets and at least one $l/c$-jet as a function of $p_{\text{T}}(l/c\text{-jet}_{1}) - p_{\text{T}}(b_{1}^{\text{add}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $|\eta(b_{1})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $|\eta(b_{2})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $|\eta(b_{1}^{\text{top}})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at leastfour $b$-jets as a function of $|\eta(b_{2}^{\text{top}})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $|\eta(b_{3})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $|\eta(b_{4})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $|\eta(b_{1}^{\text{add}})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $|\eta(b_{2}^{\text{add}})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
The measured normalised differential cross-section as a function of $N_{b-\text{jets}}$ in the $e\mu+\geq2b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $H_{\text{T}}^{\text{had}}$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $H_{\text{T}}^{\text{all}}$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R_{\text{avg}}^{bb}$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta\eta_{\text{max}}^{jj}$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{1})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{1}^{\text{top}})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{2})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{2}^{\text{top}})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{3})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{1}^{\text{add}})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{1})|$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{1}^{\text{top}})|$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{2})|$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{2}^{\text{top}})|$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{3})|$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{1}^{\text{add}})|$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(b_{1}b_{2})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{1}b_{2})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(bb^{\text{top}})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(bb^{\text{top}})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(e\mu b_{1}b_{2})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(e\mu bb^{\text{top}})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R(b_{1}b_{2})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $N_{l/c-\text{jets}}$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R(e\mu b_{1}b_{2},b_{3})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R(e\mu bb^{\text{top}}, b_{1}^{\text{add}})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R(e\mu bb^{\text{top}},l/c-\text{jet})$ in the $e\mu+\geq3b+\geq1l/c-\text{jet}$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(l/c\text{-jet}_{1}) - p_{\text{T}}(b_{1}^{\text{add}})$ in the $e\mu+\geq3b+\geq1l/c-\text{jet}$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(l/c\text{-jet}_{1})|$ in the $e\mu+\geq3b+\geq1l/c-\text{jet}$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(l/c\text{-jet}_{1})$ in the $e\mu+\geq3b+\geq1l/c-\text{jet}$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $H_{\text{T}}^{\text{had}}$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $H_{\text{T}}^{\text{all}}$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R_{\text{avg}}^{bb}$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta\eta_{\text{max}}^{jj}$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{1})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{1}^{\text{top}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{2})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{2}^{\text{top}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{3})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{1}^{\text{add}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{4})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{2}^{\text{add}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{1})|$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{1}^{\text{top}})|$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{2})|$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{2}^{\text{top}})|$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{3})|$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{1}^{\text{add}})|$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{4})|$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{2}^{\text{add}})|$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(b_{1}b_{2})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{1}b_{2})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(bb^{\text{top}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(bb^{\text{top}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(e\mu b_{1}b_{2})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(e\mu bb^{\text{top}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(bb^{\text{min}\Delta R})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(bb^{\text{min}\Delta R})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(bb^{\text{add}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(bb^{\text{add}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\text{min}\Delta R(bb)$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R(b_{1}b_{2})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $N_{l/c-\text{jets}}$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R(e\mu b_{1}b_{2},b_{3})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R(e\mu bb^{\text{top}}, b_{1}^{\text{add}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R(e\mu bb^{\text{top}}, l/c\text{-jet}_{1})$ in the $e\mu+\geq4b+\geq1l/c-\text{jet}$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(l/c\text{-jet}_{1}) - p_{\text{T}}(b_{1}^{\text{add}})$ in the $e\mu+\geq4b+\geq1l/c-\text{jet}$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(l/c\text{-jet}_{1})|$ in the $e\mu+\geq4b+\geq1l/c-\text{jet}$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(l/c\text{-jet}_{1})$ in the $e\mu+\geq4b+\geq1l/c-\text{jet}$ phase space. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $N_{b-\text{jets}}$ in the phase space with at least two b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $N_{b-\text{jets}}$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $H_{\text{T}}^{\text{had}}$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $H_{\text{T}}^{\text{all}}$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R_{\text{avg}}^{bb}$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta\eta_{\text{max}}^{jj}$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{1})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{1}^{\text{top}})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{2})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{2}^{\text{top}})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{3})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{1}^{\text{add}})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{1})|$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{1}^{\text{top}})|$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{2}^{\text{top}})|$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{2}^{\text{top}})|$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{3})|$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{1}^{\text{add}})|$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(b_{1}b_{2})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{1}b_{2})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(bb^{\text{top}})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(bb^{\text{top}})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(e\mu b_{1}b_{2})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(e\mu bb^{\text{top}})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R(b_{1}b_{2})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $N_{l/c-\text{jets}}$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R(e\mu b_{1}b_{2},b_{3})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R(e\mu bb^{\text{top}}, b_{1}^{\text{add}})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R(e\mu bb^{\text{top}},l/c-\text{jet})$ in the phase space with at least three b-jets and at least one $l/c$-jet. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(l/c\text{-jet}_{1}) - p_{\text{T}}(b_{1}^{\text{add}})$ in the phase space with at least three b-jets and at least one $l/c$-jet. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(l/c\text{-jet}_{1})|$ in the phase space with at least three b-jets and at least one $l/c$-jet. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(l/c\text{-jet}_{1})$ in the phase space with at least three b-jets and at least one $l/c$-jet. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $H_{\text{T}}^{\text{had}}$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $H_{\text{T}}^{\text{all}}$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R_{\text{avg}}^{bb}$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta\eta_{\text{max}}^{jj}$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{1})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{1}^{\text{top}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{2})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{2}^{\text{top}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{3})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{1}^{\text{add}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{4})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{2}^{\text{add}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{1})|$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{1}^{\text{top}})|$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{2})|$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{2}^{\text{top}})|$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{3})|$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{1}^{\text{add}})|$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{4})|$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{2}^{\text{add}})|$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(b_{1}b_{2})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{1}b_{2})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(bb^{\text{top}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(bb^{\text{top}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(e\mu b_{1}b_{2})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(e\mu bb^{\text{top}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(bb^{\text{min}\Delta R})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(bb^{\text{min}\Delta R})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(bb^{\text{add}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(bb^{\text{add}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\text{min}\Delta R(bb)$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R(b_{1}b_{2})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $N_{l/c-\text{jets}}$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R(e\mu b_{1}b_{2},b_{3})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R(e\mu bb^{\text{top}}, b_{1}^{\text{add}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R(e\mu bb^{\text{top}}, l/c\text{-jet}_{1})$ in the phase space with at least four b-jets and at least one $l/c$-jet. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(l/c\text{-jet}_{1}) - p_{\text{T}}(b_{1}^{\text{add}})$ in the phase space with at least four b-jets and at least one $l/c$-jet. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(l/c\text{-jet}_{1})|$ in the phase space with at least four b-jets and at least one $l/c$-jet. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(l/c\text{-jet}_{1})$ in the phase space with at least four b-jets and at least one $l/c$-jet. The overflow is included in the last bin.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.