The process e+e- --> p anti-p gamma is studied using 469 fb-1 of integrated luminosity collected with the BABAR detector at the PEP-II collider, at an e+e- center-of-mass energy of 10.6 GeV. From the analysis of the p anti-p invariant mass spectrum, the energy dependence of the cross section for e+e- --> p anti-p is measured from threshold to 4.5 GeV. The energy dependence of the ratio of electric and magnetic form factors, |G_E/G_M|, and the asymmetry in the proton angular distribution are measured for p anti-p masses below 3 GeV. We also measure the branching fractions for the decays J/psi --> p anti-p and psi(2S) --> p anti p.
Measurement of the cross section as a function of the invariant mass of the PBAR-P system and the effective form factor for the reaction E+ E- --> PBAR P. The contributions from J/PSI and PSI(25) decaying to PBAR-P have been subtracted. The form factor error is the combined statistical and systematic.
In the course of a systematic study of K+p interactions at 3.0 GeV/c, the elastic-scattering reaction has been investigated. A total of 1720 events were identified as elastic scatters, giving a cross-section of (4.8±0.4) mb. The angular distribution shows characteristic diffraction peaking and was fitted using dσ/d|t|=(dσ/d|t|)0 exp [αt+βt 2], in the momentum-transfer region (0.05÷1.14) (GeV/c)2. The best fit gaveα=(4.55±0.39) (GeV/c)−2 andβ=(0.64±0.42)(GeV/c)−4. The extrapolated experimental cross-section at 0°, (dσ/dt)0, is found to be (19.5±2.3) mb/(GeV/c)2, and exceeds the optical-theorem prediction by (3.8±2.3) mb/(GeV/c)2, implying that there is a contribution from the real part of the K+p scattering amplitude at 3.0 GeV/c.
No description provided.
A precise measurement of the cross section of the process $e^+e^-\to\pi^+\pi^-(\gamma)$ from threshold to an energy of 3GeV is obtained with the initial-state radiation (ISR) method using 232fb$^{-1}$ of data collected with the BaBar detector at $e^+e^-$ center-of-mass energies near 10.6GeV. The ISR luminosity is determined from a study of the leptonic process $e^+e^-\to\mu^+\mu^-(\gamma)\gamma_{\rm ISR}$, which is found to agree with the next-to-leading-order QED prediction to within 1.1%. The cross section for the process $e^+e^-\to\pi^+\pi^-(\gamma)$ is obtained with a systematic uncertainty of 0.5% in the dominant $\rho$ resonance region. The leading-order hadronic contribution to the muon magnetic anomaly calculated using the measured $\pi\pi$ cross section from threshold to 1.8GeV is $(514.1 \pm 2.2({\rm stat}) \pm 3.1({\rm syst}))\times 10^{-10}$.
Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ The cross section values (nb) for 337 CM energy intervals (GeV) from 0.3 to 3 GeV. The cross section is bare (excluding vacuum polarization) and includes the emission of final state photons. ***WARNING*** The quoted errors are from the diagonal elements of the statistical covariance matrix (reported on the Table titled "Bare cross-section statistical covariance") and added quadratically with the systematic uncertainties (reported in the Table titled "Bare cross-section systematic uncertainties"). These errors can be used when plotting the results as they are representative of the precision achieved. However, any calculation involving the cross section over some energy range MUST use, to be meaningful, the full statistical covariance matrix and the proper correlations of the systematic uncertainties. ***WARNING*** The Bare cross-section statistical covariance is reported as additional resource in YAML, since its size exceeds the maximum size of 10 MB for the library hepdata_lib. It is a statistical covariance matrix, for 337x337 CM energy intervals (GeV), from 0.3 to 3 GeV, matching the ones of this table.
Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ systematic uncertainties contributions and total systematic uncertainties, for 337 CM energy intervals (GeV), from 0.3 to 3 GeV. All systematics contributions are each 100% correlated in all energy bins.
Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ statistical covariance matrix, for 337x337 CM energy intervals (GeV), from 0.3 to 3 GeV.
We study the processes e+e- --> K+ K- pi+pi-gamma, K+ K- pi0pi0gamma, and K+ K- K+ K-gamma, where the photon is radiated from the initial state. About 84000, 8000, and 4200 fully reconstructed events, respectively, are selected from 454 fb-1 of BaBar data. The invariant mass of the hadronic final state defines the \epem center-of-mass energy, so that the K+ K- pi+pi- data can be compared with direct measurements of the e+e- --> K+ K- pi+pi- reaction. No direct measurements exist for the e+e- --> K+ K-pi0pi0 or e+e- --> K+ K-K+ K- reactions, and we present an update of our previous result with doubled statistics. Studying the structure of these events, we find contributions from a number of intermediate states, and extract their cross sections. In particular, we perform a more detailed study of the e+e- --> phi(1020)pipigamma reaction, and confirm the presence of the Y(2175) resonance in the phi(1020) f0(980) and K+K-f0(980) modes. In the charmonium region, we observe the J/psi in all three final states and in several intermediate states, as well as the psi(2S) in some modes, and measure the corresponding product of branching fraction and electron width.
The cross section for the reaction E+ E- --> K+ K- PI+ PI- measured with ISR data. Statistical errors only.
Cross section measurements for the reaction E+ E- --> K*(892)0 K- PI+. Statistical errors only.
Cross section measurements for the reaction E+ E- --> PHI PI+ PI-. Statistical errors only.
Using a data sample with a total integrated luminosity of 10.0 pb$^{-1}$ collected at center-of-mass energies of 2.6, 3.07 and 3.65 GeV with BESII, cross sections for $e^+e^-$ annihilation into hadronic final states ($R$ values) are measured with statistical errors that are smaller than 1%, and systematic errors that are about 3.5%. The running strong interaction coupling constants $\alpha_s^{(3)}(s)$ and $\alpha_s^{(5)}(M_Z^2)$ are determined from the $R$ values.
R values.
By analyzing the data sets of 17.3 pb$^{-1}$ taken at $\sqrt s= 3.773$ GeV and of 6.5 pb$^{-1}$ taken at $\sqrt s= 3.650$ GeV with the BES-II detector at the BEPC collider, we measure the observed cross sections for the exclusive light hadron final states of $K_S^0K^-\pi^+$, $K_S^0K^-\pi^+\pi^0$, $K_S^0K^-\pi^+\pi^+\pi^-$, $K_S^0K^-\pi^+\pi^+\pi^-\pi^0$, $K_S^0K^-\pi^+\pi^+\pi^+\pi^-\pi^-$ and $K_S^0K^-\pi^+\pi^0\pi^0$ produced in $e^+ e^-$ annihilation at the two energy points. We set the upper limits on the observed cross sections and the branching fractions for $\psi(3770)$ decay to these final states at 90% C.L..
Observed cross sections.
By analyzing the data sets of 17.3, 6.5 and 1.0 pb$^{-1}$ taken, respectively, at $\sqrt s= 3.773$, 3.650 and 3.6648 GeV with the BES-II detector at the BEPC collider, we measure the observed cross sections for $e^+e^-\to \pi^+\pi^-\pi^0\pi^0$, $K^+K^-\pi^0\pi^0$, $2(\pi^+\pi^-\pi^0)$, $K^+K^-\pi^+\pi^-\pi^0\pi^0$ and $3(\pi^+\pi^-)\pi^0\pi^0$ at the three energy points. Based on these cross sections we set the upper limits on the observed cross sections and the branching fractions for $\psi(3770)$ decay into these final states at 90% C.L..
Observed cross sections.
A comprehensive survey of event-by-event fluctuations of charged hadron multiplicity in relativistic heavy ions is presented. The survey covers Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV, and Cu+Cu collisions sqrt(s_NN) = 22.5, 62.4, and 200 GeV. Fluctuations are measured as a function of collision centrality, transverse momentum range, and charge sign. After correcting for non-dynamical fluctuations due to fluctuations in the collision geometry within a centrality bin, the remaining dynamical fluctuations expressed as the variance normalized by the mean tend to decrease with increasing centrality. The dynamical fluctuations are consistent with or below the expectation from a superposition of participant nucleon-nucleon collisions based upon p+p data, indicating that this dataset does not exhibit evidence of critical behavior in terms of the compressibility of the system. An analysis of Negative Binomial Distribution fits to the multiplicity distributions demonstrates that the heavy ion data exhibit weak clustering properties.
Additional information containing number of events which were used to reconstruct the numvers matching to Figure 1 and 2.
Additional information containing number of events which were used to reconstruct the numvers matching to Figure 1 and 2.
Additional information containing number of events which were used to reconstruct the numvers matching to Figure 1 and 2.
By analyzing the data sets of 17.3 pb$^{-1}$ taken at $\sqrt{s}=3.773$ GeV and 6.5 pb$^{-1}$ taken at $\sqrt{s}=3.650$ GeV with the BESII detector at the BEPC collider, we have measured the observed cross sections for 12 exclusive light hadron final states produced in $e^+e^-$ annihilation at the two energy points. We have also set the upper limits on the observed cross sections and the branching fractions for $\psi(3770)$ decay to these final states at 90% C.L.
Observed cross sections.
We report measurements of the exclusive cross section for $e^+e^- \to D \overline D $, where $D=D^0$ or $D^+$, in the center-of-mass energy range from the $D \overline D $ threshold to $5\mathrm{GeV}/c^2$ with initial-state radiation. The analysis is based on a data sample collected with the Belle detector with an integrated luminosity of $673$ $\mathrm{fb}^{-1}$.
Cross section of E+ E- --> D0 DBAR0.
Cross section of E+ E- --> D+ D-.