The spin density matrix elements for the ϱ 0 , K ∗0 (892) and F produced in hadronic Z 0 decays are measured in the DELPHI detector. There is no evidence for spin alignment of the K ∗0 (892) and F in the region x p ≤ 0.3 ( x p = p p beam ), where ϱ 00 = 0.33 ± 0.05 and ϱ 00 = 0.30 ± 0.04, respectively. In the fragmentation region, x p ≥ 0.4, there is some indication for spin alignment of the ϱ 0 and K ∗0 (892), since ϱ 00 = 0.43 ± 0.05 and ϱ 00 = 0.46 ± 0.08, respectively. These values are compared with those found in meson-induced hadronic reactions. For the F, ϱ 00 = 0.30 ± 0.04 for x p ≥ 0.4 and 0.55 ± 0.10 for x p ≥ 0.7. The off-diagonal spin density matrix element ϱ 1-1 is consistent with zero in all cases.
Helicity density matrices elements. The statistical and systematic errors are combined quadratically.
Helicity density matrices elements. The statistical and systematic errors are combined quadratically.
Helicity density matrices elements. The statistical and systematic errors are combined quadratically.
We have measured the polarization of D*, the energy dependence of the polarization, and the spin-density matrix of D* in e+e− annihilation at a center-of-mass energy of 29 GeV using the Time Projection Chamber detector at the SLAC storage ring PEP. In 147 pb−1 of data we see no strong evidence for polarization, alignment, or final-state interactions in this fragmentation process.
Polarization is the factor alpha(z) in the expression d width (D*-->D pi)/domega = C(1+alpha(z)cos(theta)**2).
Spin density matrices for D* --> D0 pi+.
Exclusive ϱ 0 production has been measured in 120, 200 and 280 GeV muon-proton interactions at high Q 2 (1 GeV 2 < Q 2 < 25 GeV 2 ) and W (6 GeV < W < 19 GeV). The photoproduction cross section decreases as 1/ Q 4 . A shallow t distribution, typical of a hard scattering process is observed and the ϱ 0 is found to be dominantly in the helicity zero spin state. The ϱ 0 s are mainly produced by transverse photons and s -channel helicity conservation seems to be invalid. The data cannot be described by the vector meson dominance model. These data show that at high Q 2 even exclusive ϱ 0 muoproduction is a hard scattering process and that the soft hadron-like properties of the photon have disappeared.
No description provided.
No description provided.
SYSTEMATIC ERROR ON SLOPE IN 0.8.
The differential and total corss sections and the decay density matrix elements have been measured for the reactions, γp→ωp and γp→ωΔ+ (1232) in the photon energy range 2.8 to 4.8 GeV. The total cross sections for ωΔ+ (1232) photo-production are found to be slightly larger than those for elastic ω photo-production in this energy range. The data are compared to the predictions of a theoretical model and the contributing exchange mechanics are discussed.
No description provided.
No description provided.
No description provided.
A study of ϕ-meson photoproduction by partially polarized photons of energy 20–40 GeV is reported. The production mechanism is found to conserves-channel helicity and to proceed via natural-parity exchange in thet channel. In the photoproduction of high-massK+K− states with photons of energy 20–70 GeV, there is evidence for an enhancement at a mass of 1.76 GeV with width 0.08 GeV.
No description provided.
No description provided.
No description provided.
We present results on photoproduction of ϱ 0 and ω in the reactions γ p→ π + π − p and γ p→ π + π − π 0 p by tagged photons in the energy ranges 20 to 70 GeV and 20 to 45 GeV, respectively. The production of the ϱ 0 shows dominantly the characteristics of a diffractive process with respect to the E γ and t dependence of the cross section and the spin density matrix. The ϱ 0 photoproduction yields on average over the photon energy range a total cross section of σ ( γ p→ ϱ 0 p) = 9.4±0.1 μ b with an additional systematic error of ±1 μ b, and average slope parameters of the t distribution d σ /d t ≈exp(− b | t | + ct 2 ), of b =9.1±0.1 GeV −2 and c = 3.1 ±±0.2 GeV −4 . The shape of the ϱ 0 peak in the π + π − invariant spectra shows a skewing similar to that observed at lower energies. The photoproduction of ω is also consistent with a diffractive process and has a cross section of σ ( γ p→ ω p) = 1.2± 0.1 μ b with an additional systematic error of ±0.2 μ b. The average slope parameters of the t distribution are b =8.3 ± 1.3 GeV −2 and c = 3.4±2.6 GeV −4 .
FITS USING THE SODING PARAMETERIZATION.
FITS USING THE ROSS-STODOLSKY PARAMETERIZATION.
No description provided.
We present differential cross sections andΔ++ spin density matrix elements for the photoproduction processγp→π−Δ++ and differential cross sections for the processγp→π+Δ0. The incident photon energy dependence is studied and a comparison is made with previous experiments and with the predictions of a theoretical model.
DIFFERENTIAL CROSS SECTION AVERAGED OVER WHOLE ENERGY RANGE.
DIFFERENTIAL CROSS SECTION AVERAGED OVER WHOLE ENERGY RANGE.
DIFFERENTIAL CROSS SECTION FOR DIFFERENT ENERGY RANGES.
A tagged photon beam (2.8
FITTED CROSS SECTION ENERGY DEPENDENCE IS SIG = (6.7 +- 0.7 MUB*GEV**2) * P**(-2.1 +- 0.2), INCLUDING HIGHER ENERGY DATA.
EXPONENTIAL SLOPE IS 6.1 +- 2.0 GEV**-2 FOR -T = 0.2 TO 0.7 GEV**2.
No description provided.
Measurements of the photoproduction processes γρ→ρ+n and γρ→ρ-Δ++ (1236) are reported in the energy range 2.8 to 4.8 GeV. The data show shrinkage of the differential cross section in this energy region for the process γρ→ρ-Δ++ (1236); no shrinkage is observed for the ρ+n process. The energy dependences of the ρ+n and ρ-Δ++ (1236) total cross sections are much steeper than current model prediction. The ρ spin density matrices for each process are also presented.
No description provided.
SLOPE AND INTERCEPT OF D(SIG)/DT.
No description provided.
The s and t dependence of φ (1019) photoproduction has been investigated in the incident photon energy range 2.8 to to 4.8 GeV. Differential cross-sections and density matrix elements are presented for a t range extending from t min out to −1.3 (GeV/ c ) 2 . The results are discussed in terms discussed in terms of an effective Regge trajectory in the t -channel.
DIFFERENTIAL CROSS SECTIONS AVERAGED OVER TWO RANGES OF INCIDENT PHOTON ENERGY.
VARIATION OF SMALL -T DIFFERENTIAL CROSS SECTION WITH PHOTON ENERGY.
INTERCEPT AND SLOPE FROM FITS TO D(SIG)/DT AT SMALL -T.