The anisotropy parameter v_2, the second harmonic of the azimuthal particles distribution, has been measured with the PHENIX detector in Au+Au collisions at sqrt(s_NN) = 200 GeV for identified and inclusive charged particles at central rapidities (|eta| < 0.35) with respect to the reaction plane defined at high rapidities (|eta| = 3-4). The v_2 for all particles reaches a maximum at mid-centrality, and increases with p_T up to 2 GeV/c and then saturates or decreases slightly. Our results depart from hydrodynamically predicted behavior above 2 GeV/c. A quark coalescence model is also investigated.
Correlation of reaction planes between two beam counters for the second moment is shown as a function of centrality.
The value of $v_2$ for charged particles is shown as a function of centrality (middle) and as a function of $p_T$ (right).
The value of $v_2$ for charged particles is shown as a function of transverse momentum, $p_T$.
The invariant differential cross section for inclusive neutral pion production in p+p collisions at sqrt(s_NN) = 200 GeV has been measured at mid-rapidity |eta| < 0.35 over the range 1 < p_T <~ 14 GeV/c by the PHENIX experiment at RHIC. Predictions of next-to-leading order perturbative QCD calculations are consistent with these measurements. The precision of our result is sufficient to differentiate between prevailing gluon-to-pion fragmentation functions.
The invariant differential cross section as a function of PT. The mean PT here is defined as the PT for which the cross section equals its average over thebin.
Transverse momentum spectra of neutral pions in the range 1 < p_T < 10 GeV/c have been measured at mid-rapidity by the PHENIX experiment at RHIC in Au+Au collisions at sqrt(s_NN) = 200 GeV. The pi^0 multiplicity in central reactions is significantly below the yields measured at the same sqrt(s_NN) in peripheral Au+Au and p+p reactions scaled by the number of nucleon-nucleon collisions. For the most central bin, the suppression factor is ~2.5 at p_T = 2 GeV/c and increases to ~4-5 at p_T ~= 4 GeV/c. At larger p_T, the suppression remains constant within errors. The deficit is already apparent in semi-peripheral reactions and increases smoothly with centrality.
Invariant $\pi^0$ yields at midrapidity as a function of $p_T$ for minimum bias and nine centralities in $Au\ +\ Au$ at $\sqrt{s_{NN}} = 200\ GeV$ [0%–10% (80%–92%) is most central (peripheral)]. The labels "uncorr." and "corr." include systematic errors that are uncorrelated and correlated point-to-point, respectively.
Invariant $\pi^0$ yields at midrapidity as a function of $p_T$ for minimum bias and nine centralities in $Au\ +\ Au$ at $\sqrt{s_{NN}} = 200\ GeV$ [0%–10% (80%–92%) is most central (peripheral)]. The labels "uncorr." and "corr." include systematic errors that are uncorrelated and correlated point-to-point, respectively.
Invariant $\pi^0$ yields at midrapidity as a function of $p_T$ for minimum bias and nine centralities in $Au\ +\ Au$ at $\sqrt{s_{NN}} = 200\ GeV$ [0%–10% (80%–92%) is most central (peripheral)]. The labels "uncorr." and "corr." include systematic errors that are uncorrelated and correlated point-to-point, respectively.
The Fermilab E866/NuSea Collaboration has measured the Drell-Yan dimuon cross sections in 800 GeV/$c$ $pp$ and $pd$ collisions. This represents the first measurement of the Drell-Yan cross section in $pp$ collisions over a broad kinematic region and the most extensive study to date of the Drell-Yan cross section in $pd$ collisions. The results indicate that recent global parton distribution fits provide a good description of the light antiquark sea in the nucleon over the Bjorken-$x$ range $0.03 \lesssim x < 0.15$, but overestimate the valence quark distributions as $x \to 1$.
Measurment of the scaling form of the MU+ MU- cross section in the XL range-0.05 to 0.05 from the hydrogen target.
Measurment of the scaling form of the MU+ MU- cross section in the XL range0.05 to 0.10 from the hydrogen target.
Measurment of the scaling form of the MU+ MU- cross section in the XL range0.10 to 0.15 from the hydrogen target.
Double-spin asymmetries in the cross section of electroproduction of $\rho^0$ and $\phi$ mesons on the proton and deuteron are measured at the HERMES experiment. The photoabsorption asymmetry in exclusive $\rho^0$ electroproduction on the proton exhibits a positive tendency. This is consistent with theoretical predictions that the exchange of an object with unnatural parity contributes to exclusive $\rho^0$ electroproduction by transverse photons. The photoabsorption asymmetry on the deuteron is found to be consistent with zero. Double-spin asymmetries in $\rho^0$ and $\phi $ meson electroproduction by quasi-real photons were also found to be consistent with zero: the asymmetry in the case of the $\phi$ meson is compatible with a theoretical prediction which involves $s\bar{s}$ knockout from the nucleon.
The photoabsorption asymmetry A1 for exclusive RHO0 production.
The photoabsorption asymmetry A1 for exclusive PHI electroproduction.
The photoabsorption asymmetry A1 for electroproduction of RHO0 mesons by quasi-real photons.
The Gerasimov-Drell-Hearn (GDH) sum rule connects the anomalous contribution to the magnetic moment of the target nucleus with an energy-weighted integral of the difference of the helicity-dependent photoabsorption cross sections. The data collected by HERMES with a deuterium target are presented together with a re-analysis of previous measurements on the proton. This provides a measurement of the generalised GDH integral covering simultaneously the nucleon-resonance and the deep inelastic scattering regions. The contribution of the nucleon-resonance region is seen to decrease rapidly with increasing $Q^2$. The DIS contribution is sizeable over the full measured range, even down to the lowest measured $Q^2$. As expected, at higher $Q^2$ the data are found to be in agreement with previous measurements of the first moment of $g_1$. From data on the deuteron and proton, the GDH integral for the neutron has been derived and the proton--neutron difference evaluated. This difference is found to satisfy the fundamental Bjorken sum rule at $Q^2 = 5$ GeV$^2$.
The value of the GDH integral, as a function of Q**2 , for the deuteron in three W**2 regions, the total ( > 1 GeV**2), the nucleon resonance ( 1 to 4.2 GeV**2) and the DIS (4.2 to 45 GeV**2).
The value of the GDH integral, as a function of Q**2 , for the proton in three W**2 regions, the total ( > 1 GeV**2), the nucleon resonance ( 1 to 4.2 GeV**2) and the DIS (4.2 to 45 GeV**2).
The value of the GDH integral, as a function of Q**2 , for the neutron in three W**2 regions, the total ( > 1 GeV**2), the nucleon resonance ( 1 to 4.2 GeV**2) and the DIS (4.2 to 45 GeV**2).
Results are presented on a measurement of the ttbar pair production cross section in ppbar collisions at sqrt{s} = 1.8 TeV from nine independent decay channels. The data were collected by the Dzero experiment during the 1992-1996 run of the Fermilab Tevatron Collider. A total of 80 candidate events are observed with an expected background of 38.8 +- 3.3 events. For a top quark mass of 172.1 GeV/c^2, the measured cross section is 5.69 +- 1.21 (stat) +- 1.04 (sys) pb.
Measured top quark pair production cross section in the different channels and the various averages, including the overall average.
Analyzing powers for πp elastic scattering at bombarding energies below the Δ(1232) resonance were measured at TRIUMF using the CHAOS spectrometer and a polarized spin target. This work presents π− data at six incident energies of 57, 67, 87, 98, 117, and 139 MeV, and a single π+ data set at 139 MeV. The higher energy measurements cover an angular range of 72°<~θc.m.<~180° while the lower energies were limited to 101°<~θc.m.<~180°. There is a high degree of consistency between this work and the predictions of the VPI/GWU group’s SM95 partial wave analysis.
Analysing power measurements for a 139 GeV PI+ beam (standard track).
Analysing power measurements for a 139 GeV PI- beam (standard track).
Analysing power measurements for a 117 GeV PI- beam (standard track).
PHENIX has measured the centrality dependence of charged hadron p_T spectra from central Au+Au collisions at sqrt(s_NN)=130 GeV. The truncated mean p_T decreases with centrality for p_T > 2 GeV/c, indicating an apparent reduction of the contribution from hard scattering to high p_T hadron production. For central collisions the yield at high p_T is shown to be suppressed compared to binary nucleon-nucleon collision scaling of p+p data. This suppression is monotonically increasing with centrality, but most of the change occurs below 30% centrality, i.e. for collisions with less than about 140 participating nucleons. The observed p_T and centrality dependence is consistent with the particle production predicted by models including hard scattering and subsequent energy loss of the scattered partons in the dense matter created in the collisions.
Number of participants and binary collisions and their systematic errors for the individual centrality selections used in this analysis. Also given is the ratio of the number of binary collisions for the most central sample relative to the one for each sample. The last column quantifies the ratio of binary collisions to participant pairs.
The ratio $p/h$ represents the proton plus anti-proton yield relative to the total charged hadron multiplicity. This shows the $p_T$ dependence of $p/h$ for minimum bias events.
The ratio $p/h$ represents the proton plus anti-proton yield relative to the total charged hadron multiplicity. This shows the centrality dependence of $p/h$ for $p_T >$ 1.8 GeV/$c$.
We have measured the spin structure functions g2p and g2d and the virtual photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 0.7 < Q^2 < 20 GeV^2 by scattering 29.1 and 32.3 GeV longitudinally polarized electrons from transversely polarized NH3 and 6LiD targets. Our measured g2 approximately follows the twist-2 Wandzura-Wilczek calculation. The twist-3 reduced matrix elements d2p and d2n are less than two standard deviations from zero. The data are inconsistent with the Burkhardt-Cottingham sum rule if there is no pathological behavior as x->0. The Efremov-Leader-Teryaev integral is consistent with zero within our measured kinematic range. The absolute value of A2 is significantly smaller than the sqrt[R(1+A1)/2] limit.
Values of A2 and X*G2 from proton and deuterium target data at mean electron scattering angle of 2.75 degrees and incident energy 29.1 GeV. Errors shown are statistical only.
Values of A2 and X*G2 from proton and deuterium target data at mean electron scattering angle of 5.5 degrees and incident energy 29.1 GeV. Errors shown are statistical only.
Values of A2 and X*G2 from proton and deuterium target data at mean electron scattering angle of 10.5 degrees and incident energy 29.1 GeV. Errors shown are statistical only.