Showing 10 of 271 results
Measurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 $\text{TeV}$ proton-proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum ($p_{\text{T}}$) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the $t\bar{t} \rightarrow W W b \bar{b}$ branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have $p_{\text{T}} > 500$ GeV and $p_{\text{T}} > 350$ GeV, respectively, is $331 \pm 3 \text{(stat.)} \pm 39 \text{(syst.)}$ fb. This is approximately 20$\%$ lower than the prediction of $398^{+48}_{-49}$ fb by Powheg+Pythia 8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is $1.94 \pm 0.02 \text{(stat.)} \pm 0.25 \text{(syst.)}$ pb. This agrees with the NNLO prediction of $1.96^{+0.02}_{-0.17}$ pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators.
Fiducial phase-space cross-section at particle level.
$p_{T}^{t}$ absolute differential cross-section at particle level.
$|y^{t}|$ absolute differential cross-section at particle level.
$p_{T}^{t,1}$ absolute differential cross-section at particle level.
$|{y}^{t,1}|$ absolute differential cross-section at particle level.
$p_{T}^{t,2}$ absolute differential cross-section at particle level.
$|{y}^{t,2}|$ absolute differential cross-section at particle level.
$m^{t\bar{t}}$ absolute differential cross-section at particle level.
$p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level.
$|y^{t\bar{t}}|$ absolute differential cross-section at particle level.
$\chi^{t\bar{t}}$ absolute differential cross-section at particle level.
$|y_{B}^{t\bar{t}}|$ absolute differential cross-section at particle level.
$|p_{out}^{t\bar{t}}|$ absolute differential cross-section at particle level.
$|\Delta \phi(t_{1}, t_{2})|$ absolute differential cross-section at particle level.
$H_{T}^{t\bar{t}}$ absolute differential cross-section at particle level.
$|\cos\theta^{*}|$ absolute differential cross-section at particle level.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t,2}|$ < 0.2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t,2}|$ < 0.5.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t,2}|$ < 1.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 1 < $|{y}^{t,2}|$ < 2.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$p_{T}^{t}$ normalized differential cross-section at particle level.
$|y^{t}|$ normalized differential cross-section at particle level.
$p_{T}^{t,1}$ normalized differential cross-section at particle level.
$|{y}^{t,1}|$ normalized differential cross-section at particle level.
$p_{T}^{t,2}$ normalized differential cross-section at particle level.
$|{y}^{t,2}|$ normalized differential cross-section at particle level.
$m^{t\bar{t}}$ normalized differential cross-section at particle level.
$p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level.
$|y^{t\bar{t}}|$ normalized differential cross-section at particle level.
$\chi^{t\bar{t}}$ normalized differential cross-section at particle level.
$|y_{B}^{t\bar{t}}|$ normalized differential cross-section at particle level.
$|p_{out}^{t\bar{t}}|$ normalized differential cross-section at particle level.
$|\Delta \phi(t_{1}, t_{2})|$ normalized differential cross-section at particle level.
$H_{T}^{t\bar{t}}$ normalized differential cross-section at particle level.
$|\cos\theta^{*}|$ normalized differential cross-section at particle level.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,2}|$ < 0.2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,2}|$ < 0.5.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,2}|$ < 1.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,2}|$ < 2.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Fiducial phase-space cross-section at parton level.
$p_{T}^{t}$ absolute differential cross-section at parton level.
$|y^{t}|$ absolute differential cross-section at parton level.
$p_{T}^{t,1}$ absolute differential cross-section at parton level.
$|y^{t,1}|$ absolute differential cross-section at parton level.
$p_{T}^{t,2}$ absolute differential cross-section at parton level.
$|{y}^{t,2}|$ absolute differential cross-section at parton level.
$m^{t\bar{t}}$ absolute differential cross-section at parton level.
$p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level.
$|{y}^{t\bar{t}}|$ absolute differential cross-section at parton level.
${\chi}^{t\bar{t}}$ absolute differential cross-section at parton level.
$|y_{B}^{t\bar{t}}|$ absolute differential cross-section at parton level.
$|p_{out}^{t\bar{t}}|$ absolute differential cross-section at parton level.
$|\Delta \phi(t_{1}, t_{2})|$ absolute differential cross-section at parton level.
$H_{T}^{t\bar{t}}$ absolute differential cross-section at parton level.
$|\cos\theta^{*}|$ absolute differential cross-section at parton level.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t,2}|$ < 0.2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t,2}|$ < 0.5.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t,2}|$ < 1.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 1 < $|{y}^{t,2}|$ < 2.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$p_{T}^{t}$ normalized differential cross-section at parton level.
$|y^{t}|$ normalized differential cross-section at parton level.
$p_{T}^{t,1}$ normalized differential cross-section at parton level.
$|y^{t,1}|$ normalized differential cross-section at parton level.
$p_{T}^{t,2}$ normalized differential cross-section at parton level.
$|{y}^{t,2}|$ normalized differential cross-section at parton level.
$m^{t\bar{t}}$ normalized differential cross-section at parton level.
$p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level.
$|{y}^{t\bar{t}}|$ normalized differential cross-section at parton level.
${\chi}^{t\bar{t}}$ normalized differential cross-section at parton level.
$|y_{B}^{t\bar{t}}|$ normalized differential cross-section at parton level.
$|p_{out}^{t\bar{t}}|$ normalized differential cross-section at parton level.
$|\Delta \phi(t_{1}, t_{2})|$ normalized differential cross-section at parton level.
$H_{T}^{t\bar{t}}$ normalized differential cross-section at parton level.
$|\cos\theta^{*}|$ normalized differential cross-section at parton level.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,2}|$ < 0.2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,2}|$ < 0.5.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,2}|$ < 1.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,2}|$ < 2.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
The cross section for the reaction $ e p \to e^{\prime} p \pi^{+} \pi^{-}$ was measured in the resonance region for 1.4$<$W$<$2.1 GeV and 0.5$
Measured cross section DSIG/DM(PI+PI-) for the W range 1400 to 1425GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1425 to 1450GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1450 to 1475GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1475 to 1500GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1500 to 1525GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1525 to 1550GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1550 to 1575GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1575 to 1600GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1600 to 1625GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1625 to 1650GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1650 to 1675GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1675 to 1700GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1700 to 1725GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1725 to 1750GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1750 to 1775GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1775 to 1800GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1800 to 1825GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1825 to 1850GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1850 to 1875GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1875 to 1900GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1900 to 1925GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1925 to 1950GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1950 to 1975GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1975 to 2000GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 2000 to 2025GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 2025 to 2050GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 2050 to 2075GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 2075 to 2100GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1400 to 1425GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1425 to 1450GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1450 to 1475GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1475 to 1500GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1500 to 1525GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1525 to 1550GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1550 to 1575GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1575 to 1600GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1600 to 1625GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1625 to 1650GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1650 to 1675GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1675 to 1700GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1700 to 1725GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1725 to 1750GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1750 to 1775GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1775 to 1800GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1800 to 1825GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1825 to 1850GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1850 to 1875GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1875 to 1900GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1900 to 1925GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1925 to 1950GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1950 to 1975GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1975 to 2000GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 2000 to 2025GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 2025 to 2050GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 2050 to 2075GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 2075 to 2100GeV.
Measured c.m. angular distribution of the PI- for the W range 1400 to 1425GeV.
Measured c.m. angular distribution of the PI- for the W range 1425 to 1450GeV.
Measured c.m. angular distribution of the PI- for the W range 1450 to 1475GeV.
Measured c.m. angular distribution of the PI- for the W range 1475 to 1500GeV.
Measured c.m. angular distribution of the PI- for the W range 1500 to 1525GeV.
Measured c.m. angular distribution of the PI- for the W range 1525 to 1550GeV.
Measured c.m. angular distribution of the PI- for the W range 1550 to 1575GeV.
Measured c.m. angular distribution of the PI- for the W range 1575 to 1600GeV.
Measured c.m. angular distribution of the PI- for the W range 1600 to 1625GeV.
Measured c.m. angular distribution of the PI- for the W range 1625 to 1650GeV.
Measured c.m. angular distribution of the PI- for the W range 1650 to 1675GeV.
Measured c.m. angular distribution of the PI- for the W range 1675 to 1700GeV.
Measured c.m. angular distribution of the PI- for the W range 1700 to 1725GeV.
Measured c.m. angular distribution of the PI- for the W range 1725 to 1750GeV.
Measured c.m. angular distribution of the PI- for the W range 1750 to 1775GeV.
Measured c.m. angular distribution of the PI- for the W range 1775 to 1800GeV.
Measured c.m. angular distribution of the PI- for the W range 1800 to 1825GeV.
Measured c.m. angular distribution of the PI- for the W range 1825 to 1850GeV.
Measured c.m. angular distribution of the PI- for the W range 1850 to 1875GeV.
Measured c.m. angular distribution of the PI- for the W range 1875 to 1900GeV.
Measured c.m. angular distribution of the PI- for the W range 1900 to 1925GeV.
Measured c.m. angular distribution of the PI- for the W range 1925 to 1950GeV.
Measured c.m. angular distribution of the PI- for the W range 1950 to 1975GeV.
Measured c.m. angular distribution of the PI- for the W range 1975 to 2000GeV.
Measured c.m. angular distribution of the PI- for the W range 2000 to 2025GeV.
Measured c.m. angular distribution of the PI- for the W range 2025 to 2050GeV.
Measured c.m. angular distribution of the PI- for the W range 2050 to 2075GeV.
Measured c.m. angular distribution of the PI- for the W range 2075 to 2100GeV.
A new method is employed to measure the neutral current cross section up to Bjorken-x values of one with the ZEUS detector at HERA using an integrated luminosity of 65.1 pb-1 for e+p collisions and 16.7 pb-1 for e-p collisions at sqrt{s}=318 GeV and 38.6 pb-1 for e+p collisions at sqrt{s}=300 GeV. Cross sections have been extracted for Q2 >= 648 GeV2 and are compared to predictions using different parton density functions. For the highest x bins, the data have a tendency to lie above the expectations using recent parton density function parametrizations.
Mean values and differential distributions of event-shape variables have been studied in neutral current deep inelastic scattering using an integrated {luminosity} of 82.2 pb$^{-1}$ collected with the ZEUS detector at HERA. The kinematic range was $80 < Q^2 < 20 480\gev^2$ and $0.0024 < x < 0.6$, where $Q^2$ is the virtuality of the exchanged boson and $x$ is the Bjorken variable. The data are compared with a model based on a combination of next-to-leading-order QCD calculations with next-to-leading-logarithm corrections and the Dokshitzer-Webber non-perturbative power corrections. The power-correction method provides a reasonable description of the data for all event-shape variables studied. Nevertheless, the lack of consistency of the determination of $\alpha_s$ and of the non-perturbative parameter of the model, $\albar$, suggests the importance of higher-order processes that are not yet included in the model.
Mean value of the event shape variable 1-THRUST(C=T).
Mean value of the event shape variable B(C=T).
Mean value of the event shape variable RHO**2.
Mean value of the event shape variable C-PARAM.
Mean value of the event shape variable 1-THRUST(C=G).
Mean value of the event shape variable B(C=G).
Deep inelastic scattering and its diffractive component, ep -> e'gamma*p ->e'XN, have been studied at HERA with the ZEUS detector using an integrated luminosity of 4.2 pb-1. The measurement covers a wide range in the gamma*p c.m. energy W (37 - 245 GeV), photon virtuality Q2 (2.2 - 80 GeV2) and mass Mx. The diffractive cross section for Mx > 2 GeV rises strongly with W: the rise is steeper with increasing Q2. The latter observation excludes the description of diffractive deep inelastic scattering in terms of the exchange of a single Pomeron. The ratio of diffractive to total cross section is constant as a function of W, in contradiction to the expectation of Regge phenomenology combined with a naive extension of the optical theorem to gamma*p scattering. Above Mx of 8 GeV, the ratio is flat with Q2, indicating a leading-twist behaviour of the diffractive cross section. The data are also presented in terms of the diffractive structure function, F2D(3)(beta,xpom,Q2), of the proton. For fixed beta, the Q2 dependence of xpom F2D(3) changes with xpom in violation of Regge factorisation. For fixed xpom, xpom F2D(3) rises as beta -> 0, the rise accelerating with increasing Q2. These positive scaling violations suggest substantial contributions of perturbative effects in the diffractive DIS cross section.
None
AVERAGE OVER ALL TARGETS.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
We report results for the virtual photon asymmetry $A_1$ on the nucleon from new Jefferson Lab measurements. The experiment, which used the CEBAF Large Acceptance Spectrometer and longitudinally polarized proton ($^{15}$NH$_3$) and deuteron ($^{15}$ND$_3$) targets, collected data with a longitudinally polarized electron beam at energies between 1.6 GeV and 5.7 GeV. In the present paper, we concentrate on our results for $A_1(x,Q^2)$ and the related ratio $g_1/F_1(x,Q^2)$ in the resonance and the deep inelastic regions for our lowest and highest beam energies, covering a range in momentum transfer $Q^2$ from 0.05 to 5.0 GeV$^2$ and in final-state invariant mass $W$ up to about 3 GeV. Our data show detailed structure in the resonance region, which leads to a strong $Q^2$--dependence of $A_1(x,Q^2)$ for $W$ below 2 GeV. At higher $W$, a smooth approach to the scaling limit, established by earlier experiments, can be seen, but $A_1(x,Q^2)$ is not strictly $Q^2$--independent. We add significantly to the world data set at high $x$, up to $x = 0.6$. Our data exceed the SU(6)-symmetric quark model expectation for both the proton and the deuteron while being consistent with a negative $d$-quark polarization up to our highest $x$. This data setshould improve next-to-leading order (NLO) pQCD fits of the parton polarization distributions.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1300 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1500 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1700 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1900 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.2100 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.2300 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.2500 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.2700 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.2900 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.3100 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.3300 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.3500 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.3700 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.3900 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.4100 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.4300 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.4500 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.4700 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.4900 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.5100 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.5300 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.5500 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.5700 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.5900 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.6100 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.6300 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.6500 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1100 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.1750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.2250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.2750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.3250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.3750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.4250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.4750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.5250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.5750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.6250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.6750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.7250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.7750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.8250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.8750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.9250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.9750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.0250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.0750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.1250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.1750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.2250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.2750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.3250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.3750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.4250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.4750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.5250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.5750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.6250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.6750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.7250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.7750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.8250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.8750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.9250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.9750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 3.0250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 3.0750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.1250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.0850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.0850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.0950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.0950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.1050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.1050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.1150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.1150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.1250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.1250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.1350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.1350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.1450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.1450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.1550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.1550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.1650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.1650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.1750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.1750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.1850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.1850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.1950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.1950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.2050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.2050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.2150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.2150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.2250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.2250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.2350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.2350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.2450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.2450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.2550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.2550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.2650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.2650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.2750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.2750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.2850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.2850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.2950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.2950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.3050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.3050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.3150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.3150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.3250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.3250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.3350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.3350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.3450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.3450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.3550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.3550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.3650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.3650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.3750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.3750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.3850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.3850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.3950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.3950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.4050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.4050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.4150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.4150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.4250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.4250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.4350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.4350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.4450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.4450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.4550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.4550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.4650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.4650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.4750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.4750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.4850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.4850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.4950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.4950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.5050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.5050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.5150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.5150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.5250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.5250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.5350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.5350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.5450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.5450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.5550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.5550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.5650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.5650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.5750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.5750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.5850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.5850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.5950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.5950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.6050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.6050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.6150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.6150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.6250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.6250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.6350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.6350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.6450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.6450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.6550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.6550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.6650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.6650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.6750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.6750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.6850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.6850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.6950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.6950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.7050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.7050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.7150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.7150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.7250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.7250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.7350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.7350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.7450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.7550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.7650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.7750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.7850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.7950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.8050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.8150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.8250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.8350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.8450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.8550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.8650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.8750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.8850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.8950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.9050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.9150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.9250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.9350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.9450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.9550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.9650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.9750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.9850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.9950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.0050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.0150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.0250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.0350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.0450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.0550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.0650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.0750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.0850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.0950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.1050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.1150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.1250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.1350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.1450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.1550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.1650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.1750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.1850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.1950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.2050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.2150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.2250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.2350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.2450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.2550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.2650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.2750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.2850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.2950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.3050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.3150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.3250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.3350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.3450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.3550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.3650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.3750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.3850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.3950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.4050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.4150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.4250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.4350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.4450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.4550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.4650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.4750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.4850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.4950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.5050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.5150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.5250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.5350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.5450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.5550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.5650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.5750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.5850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.5950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.6050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.6150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.6250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.6350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.6450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.6550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.6650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.6750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.6850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.6950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.7050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.7150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.7250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.7350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.7450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.7550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.7650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.7750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.7850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.7950 GeV.
The ep -> e'pi^+n reaction was studied in the first and second nucleon resonance regions in the 0.25 GeV^2 < Q^2 < 0.65 GeV^2 range using the CLAS detector at Thomas Jefferson National Accelerator Facility. For the first time the absolute cross sections were measured covering nearly the full angular range in the hadronic center-of-mass frame. The structure functions sigma_TL, sigma_TT and the linear combination sigma_T+epsilon*sigma_L were extracted by fitting the phi-dependence of the measured cross sections, and were compared to the MAID and Sato-Lee models.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.11 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.13 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.15 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.17 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.19 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.21 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.23 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.25 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.27 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.29 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.31 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.33 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.35 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.37 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.39 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.41 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.43 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.45 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.47 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.49 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.51 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.53 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.55 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.57 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.11 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.13 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.15 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.17 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.19 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.21 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.23 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.25 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.27 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.29 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.31 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.33 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.35 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.37 GeV.
Cross sections for W = 1.11 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.11 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.11 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.11 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.11 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.11 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.11 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.11 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.11 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 157.5 deg.
The production of\(\bar D\) mesons in neutroncarbon interactions at 40–70 GeV/c has been investigated. The\(\bar D\) mesons were detected via the hadronic decay modes\(\bar D^0\to K^{* + } (892)\pi ^ -\) andD−→K*+(892)π−π−. In the kinematical regionxF>0.5 andpT<1 GeV/c the following inclusive cross sections were measured:\(\sigma _{\bar D^0 }= (28 \pm 14)\mu b\) and\(\sigma _{D^ -}= (28 \pm 13)\mu b\) per carbon nucleus. The invariant longitudinal momentum spectra can be described by (1−x)N with\(N_{\bar D^0 }= 1.1 \pm 0.5 \pm 0.4\) and\(N_{D^ -}= 0.8 \pm 0.4 \pm 0.4\) The transverse momentum spectra were parametrized by exp (−BpT2) with\(B_{\bar D^0 }= (1.2_{ - 0.9}^{ + 1.1} )({{GeV} \mathord{\left/ {\vphantom {{GeV} c}} \right. \kern-\nulldelimiterspace} c})^{ - 2} \) and\(B_{D^ -}= (1.8_{ - 1.0}^{ + 1.3} )({{GeV} \mathord{\left/ {\vphantom {{GeV} c}} \right. \kern-\nulldelimiterspace} c})^{ - 2} \).
No description provided.
Deep inelastic scattering and its diffractive component, $ep \to e^{\prime}\gamma^* p \to e^{\prime}XN$, have been studied at HERA with the ZEUS detector using an integrated luminosity of 52.4 pb$^{-1}$. The $M_X$ method has been used to extract the diffractive contribution. A wide range in the centre-of-mass energy $W$ (37 -- 245 GeV), photon virtuality $Q^2$ (20 -- 450 GeV$^2$) and mass $M_X$ (0.28 -- 35 GeV) is covered. The diffractive cross section for $2 < M_X < 15$ GeV rises strongly with $W$, the rise becoming steeper as $Q^2$ increases. The data are also presented in terms of the diffractive structure function, $F^{\rm D(3)}_2$, of the proton. For fixed $Q^2$ and fixed $M_X$, $\xpom F^{\rm D(3)}_2$ shows a strong rise as $\xpom \to 0$, where $\xpom$ is the fraction of the proton momentum carried by the Pomeron. For Bjorken-$x < 1 \cdot 10^{-3}$, $\xpom F^{\rm D(3)}_2$ shows positive $\log Q^2$ scaling violations, while for $x \ge 5 \cdot 10^{-3}$ negative scaling violations are observed. The diffractive structure function is compatible with being leading twist. The data show that Regge factorisation is broken.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.