The inclusive production of photons in\(\bar pp\) interactions has been studied at incident momentum of 12 GeV/c. Topological cross section has been presented and KNO distribution for\(\bar pp\) interactions has been studied. Inclusive cross section for γ production has been measured to be 149.5±8.8 mb. Bulk of these photons come from π0 decays whose cross section has been evaluated independently to be 60.4±7.9 mb. Signals of η and ω have been seen in γγ and π+π-π0 decay modes and their inclusive cross sections have been estimated to be 14.9±8.8 mb and 14.6±7.0 mb respectively. Results on average multiplicities of γ and two particle correlation parameters are presented. Neutral pions seem to be more strongly correlated than the charged pions. The inclusive distributions of the Feynmanx andpT/2 of the photons are compared with expectation from charged pions on the basis of charge independence. Energy dependence of the normalised invariant distributions has been studied. The distribution of the scaling variablez of photons ine+e− and\(\bar pp\) interactions has been compared.
.
.
.
The p p elastic differential cross section at 30 GeV/ c incident momentum has been measured in a two-arm spectrometer experiment (WA7) at the CERN SPS. The | t |-range covered extends from 0.5 to 5.8 (GeV/ c ) 2 . A pronounced dip-bump structure is observed, with a sharp minimum around | t | ≈ 1.7 (GeV/ c ) 2 . The results are compared with existing p p data at lower energies and with our earlier p p data at 50 GeV/ c . A number of model predictions are discussed. We also compare the p p 30 GeV/ c differential cross section with that of pp at the same momentum. Finally, the energy dependence of the p p fixed-| t | differential cross in the incident momentum range 3.6 to 50 GeV/ c is presented.
NUMERICAL VALUES SUPPLIED BY D. IMRIE. ERROR CONTAINS BOTH STATISTICS AND SYSTEMATICS.
Antiproton-proton and proton-proton small-angle elastic scattering have been measured for centre-of-mass energies √ s = 30.7 and 62.5 GeV at the CERN Intersecting Storage Rings (ISR). Antiproton-proton and proton-proton total cross sections are obtained using the optical theorem. The measurement of the Coulomb scattering and its interference with the nuclear scattering allows a determination of the ratio of the real-to-imaginary part of the forward nuclear scattering amplitude. Also presented are measurements for the nuclear slope parameter at √ s = 62.5 GeV. Our new results reinforce the conclusions drawn recently from our measurements at √ s = 52.8 GeV. In particular, the pp̄ total cross section is rising at ISR energies and should continue to rise well beyond these energies.
DATA REQUESTED FROM AUTHORS.
RESULTS OF FITS.
RESULTS OF FITS.
Proton-antiproton elastic scattering at CM energy 540 GeV has been studied in the t -range 0.04 < − t < 0.45 GeV 2 . The data are well fitted by the form exp ( bt ) with b = 17.1 ± 1.0 GeV −2 for | t | = 0.04 − 0.18 GeV su 2 and b = 13.7 ± 0.2 ± 0.2 GeV −2 for | t | = 0.21−0.45 GeV 2 . A luminosity measurement combined with the optical theorem gives σ tot = 67.6 ± 5.9 ± 2.7 mb and σ e1 / σ tot = 0.209 ± 0.018 ± 0.008.
No description provided.
No description provided.
ELASTIC RATIO ASSUMES RHO=0.
Proton-antiproton and proton-proton elastic scattering have been measured in the four-momentum transfer range 0.001⩽| t |⩽0.06 GeV 2 for center-of-mass energy 52.8 GeV at the CERN Intersecting Storage Rings (ISR). Using the known pp total cross section, a simultaneous fit to the pp̄ and pp differential cross sections yields the pp̄ total cross section; in addition, we obtain the ratio of the real-to-imaginary part of the forward nuclear-scattering amplitude and the nuclear-slope parameter for both pp̄ and pp. Our results show conclusively that the pp̄ total cross section is rising at ISR energies and lend support to conventional theories in which the difference between the pp̄ and pp total cross section vanishes at very high energy.
No description provided.
RESULTS OF FIT.
No description provided.
A description is given of an experiment to study elastic scattering of π ± , K ± and p on protons at c.m. scattering angles from 45° to 100° at incident laboratory momenta 20 GeV/ c and 30 GeV/ c . The corresponding t range is from −6.2 (GeV/ c ) 2 to −28 (GeV/ c ) 2 . There are no previous observations for these reactions in this t range. High intensity and large geometrical acceptance were required in order to measure the low cross sections. The experiment used a double-arm spectrometer. MWPCs were used for reconstruction, and threshold and differential Čerenkov counters for identification. Scintillation counters, Čerenkov counters and a hadron calorimeter were used in the trigger. The trigger logic utilized specially designed matrices and a hard wired microprocessor. The π − p elastic scattering cross sections follow approximately the dimensional counting rule from 3.5 GeV/ c .and up to 30 GeV/ c . The cross sections decrease by seven orders of magnitude in this energy range. The data is compared to quark models. None of these models give a comprehensive description of the results. However, some modifications to these models improve their consistency with the data.
EARLIER RESULTS GIVEN IN 'A'.
No description provided.
No description provided.
3roton-antiproton elastic scattering at cm energy 540 GeV has been studied in the t range 0.14 ⩽ − t ⩽ 0.26 GeV 2 . The data is well fitted by an exponential form exp( bt ) with b = 13.3 ± 1.5 GeV −2 .
Elastic Differentiaol Cross Section (545 events). DATA REQUESTED 21 FEB 1983. Data read from plot in paper (29 JAN 2015).
No description provided.
The p p elastic differential cross section at 50 GeV/c has been measured in a two-arm spectrometer experiment at the CERN SPS. The | t | range covered extends from 0.7 to 5 (GeV/c. A pronounced dip-bump structure is observed with a sharp minimum at | t | = 1.5 (GeV/ c ) 2 .
No description provided.
We report on a measurement of elastic differential cross sections for p±p, π±p, and K±p at 100 and 200 GeV/c in the range 0.03<|t|<0.10 (GeV/c)2. Our data display a simple exponential dependence which is consistent with other measurements in this t region or with extrapolations from higher t.
No description provided.
No description provided.
We have measured the elastic cross section for pp, p¯p, π+p, π−p, K+p, and K−p scattering at incident momenta of 70, 100, 125, 150, 175, and 200 GeV/c. The range of the four-momentum transfer squared t varied with the beam momentum from 0.0016≤−t≤0.36 (GeV/c)2 at 200 GeV/c to 0.0018≤−t≤0.0625 (GeV/c)2 at 70 GeV/c. The conventional parametrization of the t dependence of the nuclear amplitude by a simple exponential in t was found to be inadequate. An excellent fit to the data was obtained by a parametrization motivated by the additive quark model. Using this parametrization we determined the ratio of the real to the imaginary part of the nuclear amplitude by the Coulomb-interference method.
No description provided.