We report on a study of 15-GeV/c π+p interactions of all topologies using the SLAC 82-in. hydrogen bubble chamber. A description is given of the automatic pattern-recognition techniques used to measure the events. Cross sections are given for meson-resonance production in all topologies. Evidence is presented for a new resonance decaying to five pions. A measurement is made of the branching ratios of the g meson. A study is made of low-mass enhancements in the diffractively produced ρπ, fπ, and gπ channels, and a search is made for nondiffractive production of the A1 meson.
Total cross sections of p¯p and p¯d have been measured between 360 and 1050 MeV/c, with high statistical precision. Structures are observed in both cross sections at about the same momenta. For p¯p, the central mass is 1932±2 MeV/c2, and a fit to the data with a simple Breit-Wigner resonance plus background gives Γ=9−3+4 MeV/c2. The data suggest that the structures are in the isospin-1 state.
A search for the production of charmed particles in 15-BeV/c π+p interactions has been carried out. The search was sensitive to charmed particles in the 1.5 to 4.0 BeV mass range, with lifetimes ≲10−11 sec, decaying into a strange particle with up to eight additional pions. No evidence for the production of such particles was found.
We have measured, as a function of transverse momentum (p⊥), the invariant cross section Edσd3p for the production of π±, K±, p, p¯, d, and d¯ in proton collisions with a tungsten (W) target at incident proton energies of 200, 300, and 400 GeV. The measurements were made in the region of 90° in the c.m. system of the incident proton and a single nucleon at rest. Measurements were also made with 300-GeV protons incident on Be, Ti, and W targets of equal interaction length. These p-nucleus measurements, which show a strong dependence on atomic number at high p⊥, were used to extract effective proton-nucleon cross sections by extrapolation to atomic number unity. At large values of the scaling variable x⊥=2p⊥s, where s is the square of the c.m. energy, the pion data are found to be well represented by the expression (s)−ne−ax⊥, with n=11.0±0.4 and a=36.0±0.4. x⊥<0.35, where similar measurements have been made at the CERN ISR, our data are in good agreement with the ISR data.
We have measured the inclusive production of massive dimuons (7<~Mμμ<~11 GeV/c2) by 200-, 300-, and 400-GeV protons incident on Cu in order to check whether the dimensionless cross section Mμμ3[dσdMμμdy]y=0 is a function of Mμμ2s alone, where s is the square of the c.m. energy. The results support the scaling hypothesis.
We measured the cross section for proton-proton elastic scattering at 11.75 GeV/c using the Zero Gradient Synchrotron 52% polarized proton beam and a 60% polarized proton target. We measured dσdt(ij) in the ↑↑, ↓↓, and ↑↓ initial spin states perpendicular to the scattering plane in the range P⊥2=2.0−3.6 (GeV/c)2. We found that the asymmetry parameter A decreases smoothly with increasing P⊥2 in this range, and that the spin-spin correlation parameter Cnn may have a minimum near P⊥2=3 (GeV/c)2.
We measured dσdt for p+p→p+p at 11.75 GeV/c using the zero-gradient synchrotron 70% polarized-proton beam and a 65% polarized-proton target. We obtained the spin-orbit asymmetry parameter A and the spin-spin correlation parameter Cm out to P⊥2=4.2 (GeV/c)2. We found that A drops smoothly towards zero, but that Cnn increases abruptly near P⊥2=3.6 (GeV/c)2, where the exp(−1.4P⊥2) component of elastic scattering becomes dominant. This suggests that large-P⊥2 "hard" elastic scattering may occur mostly when the two proton spins are parallel.
We measured dσdt for p↑+p↑→p+p from P⊥2=4.50 to 5.09 (GeV/c)2 at 11.75 GeV/c. We used a 59%-polarized proton beam and a 71%-polarized proton target with both spins oriented perpendicular to the scattering plane. In these large-P⊥2 hard-scattering events, spin effects are very large and the ratio (dσdt)↑↑:(dσdt)↑↓ grows rapidly with increasing P⊥2, reaching a value of 4 at 90° (c.m.). Thus, hard elastic scattering, which is presumably due to the direct scattering of the protons' constituents, may only occur when the two incident protons' spins are parallel.
This Letter reports measurements of the ratios of $\pi$, K, and p production at large values of transverse momentum in $\pi^- −p$ collisions. The charge ratios, such as $\frac {\pi^−} {\pi^+}$, $\frac {K^−} {K^+}$, and $\frac {\overline{p}}{p}$ are seen to be quite different from those measured in p −p collisions. These ratios are sensitive tests of hard-scattering models, and are compared with theoretical predictions. The particle ratios have also been studied as a function of center-of-mass angle ($\theta^*$) at $\theta^*$ = 90°, 77°, and 60°.
We have observed muons produced directly in Cu and W targets by 300-GeV incident protons. We find a yield of muons which is approximately a constant fraction (0.8·10−4) of the pion yield for both positive and negative charges and for transverse momenta between 1.5 and 5.4 GeV/c.