Date

Atomic Weight Dependence of the Production of Hadron Pairs from 800-GeV/c Protons on Nuclear Targets

Turner, Kathleen R. ; Boca, G. ; Georgiopoulos, C. ; et al.
Phys.Rev.Lett. 66 (1991) 864-867, 1991.
Inspire Record 278395 DOI 10.17182/hepdata.19892

Fermilab experiment 711 has investigated proton-nucleus collisions in which two high-transverse-momentum hadrons are produced forming high-mass ++, +-, and -- charged states, using an 800-GeV/c proton beam on targets of beryllium, aluminum, iron, and tungsten. Our data cover the range in dihadron mass from 6 to 15 GeV/c2. We show here that the dependence of the cross section on atomic weight A can be parametrized as Aα where α=1.043±0.011(stat)±0.025 (syst), and is independent of the charge state of the dihadron system.

3 data tables

No description provided.

No description provided.

No description provided.


Characteristics of Charm Production by 400-{GeV} Protons

Duffy, M.E. ; Fanourakis, G.K. ; Loveless, R.J. ; et al.
Phys.Rev.Lett. 57 (1986) 1522, 1986.
Inspire Record 229849 DOI 10.17182/hepdata.20206

In a beam-dump experiment at Fermilab the cross section for charm-particle production has been deduced from a measurement of the prompt neutrino flux. The reaction cross section, if we assume only DD¯ and the dependence on atomic weight A0.75, is 57.2 ± 2.9 ± 8.5 μb/nucleon and the dependence on Feynman x and transverse momentum is EDd3σdpD3∝(1−x)3.2e−1.5p⊥ (p⊥ in GeV/c). The data are consistent with as much as 40% diffractive production of ΛcD¯.

2 data tables

Assuming only (D AD) production and branching ratio BR(D--> NU) = 0.101.

Assuming both (D AD) and (LAMBDA/C AD) production.


Measurement of the Dijet Cross-Section in 400-GeV p p Collisions

The E-609 collaboration Arenton, M.W. ; Ditzler, W.R. ; Fields, T.H. ; et al.
Phys.Rev.Lett. 53 (1984) 1988, 1984.
Inspire Record 15116 DOI 10.17182/hepdata.23566

The invariant cross section for production of jet pairs in 400-GeV/c pp interactions has been measured as a function of pT in the pT range 4 to 9 GeV/c. The results are in good agreement with predictions of perturbative QCD models.

1 data table

ACTUALLY THE PT IS THE AVERAGE OF THE 2 JETS.


Experimental Test of the {Drell-Yan} Model in $p W \to \mu^+ \mu^- X$

Smith, S.R. ; Childress, S. ; Mockett, P.M. ; et al.
Phys.Rev.Lett. 46 (1981) 1607, 1981.
Inspire Record 164176 DOI 10.17182/hepdata.20659

We report a high-statistics study of the reaction p+W→μ++μ−+X with use of an intense 400-GeV/c proton beam, a magnetized-iron beam dump, and a wide-acceptance detector. Using data near xF=0, we have extracted the nucleon sea-quark distribution and find it to be a factor 1.6±0.3 larger than that obtained by inelastic charged-current neutrino scattering. We then compare the Drell-Yan prediction with our data including the previously unexplored region of large xF and find excellent agreement for a wide range of μ-pair invariant mass.

6 data tables

Dimuon mass mass distribution at XFP=0.1.

Dimuon production for varying mass as function of XFP.

Dimuon production for varying mass as function of XFP.

More…

Neutron-Proton Differential Cross Sections at Fermilab Energies

DeHaven, C.E., Jr. ; Ayre, C.A. ; Gustafson, H.Richard ; et al.
FERMILAB-PUB-78-117-E, 1978.
Inspire Record 132193 DOI 10.17182/hepdata.20816

We report the results of an experiment which measured n-p elastic scattering differential cross sections over a range in -t from 0.15 to ~ 3.6 (Gev/c)2 for incident neutron momenta from 70 to 400 GeV/c. We find the logarithmic slope parameter, evaluated at -t = 0.2 (GeV/c)2, to be consistent with existing proton-proton parameterizations. The data exhibit a dip in the cross section near -t 1.4 (Gev/c)2 for incident neutron momenta above 200 Gev/c. For neutron momenta less than 280 GeV/c, the neutron-proton cross sections are found to be higher than existing proton-proton data in the range 0.7 ~ -t ~ 1.3 (Gev/c)2 which is in contradic- tion to most Regge predictions.

8 data tables

No description provided.

No description provided.

No description provided.

More…

Large Angle Neutron-Proton Elastic Scattering from 5-GeV/c to 12-GeV/c

Stone, J.L. ; Chanowski, J.P. ; Gustafson, H.Richard ; et al.
Nucl.Phys.B 143 (1978) 1-39, 1978.
Inspire Record 122922 DOI 10.17182/hepdata.34917

This paper describes a measurement of the neutron-proton differential cross section made at the Argonne National Laboratory Zero Gradient Synchrotron. The differential cross sections, based on about 470 000 events, are presented for 8 different momentum ranges between 4.5 and 12.5 GeV/ c . The data extend from small angles out to about 145° in the c.m.s., corresponding to 0.14 < − t ⪅ 19 (GeV/ c ) 2 at the highest energies. These results in conjunction with previous np charge-exchange data provide almost complete angular distributions in this momentum range. A detailed comparison of the data with existing pp data and with theoretical predictions is made.

1 data table

No description provided.


Large Angle Neutron-Proton Elastic Scattering from 5-GeV/c to 12-GeV/c

Stone, J.L. ; Chanowski, J.P. ; Gray, S.W. ; et al.
Phys.Rev.Lett. 38 (1977) 1315, 1977.
Inspire Record 5159 DOI 10.17182/hepdata.3372

Neutron-proton differential cross sections have been measured with good statistics for four-momentum transfers 0.14<−t≲19.0 (GeV/c)2 at laboratory momenta ranging from 4.5 to 12.5 GeV/c. The experiment was carried out in a neutron beam at the Argonne National Laboratory zero-gradient synchrotron. These results in conjunction with previous n−p charge-exchange data provide almost complete elastic-scattering angular distributions in this momentum range.

8 data tables

No description provided.

No description provided.

No description provided.

More…

Neutron-Deuteron Elastic Scattering from 6-GeV/c to 12.5-GeV/c

Chanowski, John P. ; Gustafson, H. Richard ; Longo, Michael J. ; et al.
Phys.Lett.B 61 (1976) 93, 1976.
Inspire Record 2825 DOI 10.17182/hepdata.27665

The differential cross section for neutron-deuteron elastic scattering was measured for four-momentum transfers 0.3 < − t < 2.0 (GeV/c) 2 with incident neutron momenta between 6 and 12.5 GeV/c. The measurement was made with spark chambers at the Argonne ZGS. Results are compared with proton-deuteron elastic scattering at comparable energies as a test of isospin invariance in strong interactions and with the predictions of the Glauber multiple scattering theory. Very good agreement is found.

8 data tables

UNPUBLISHED DATA.

No description provided.

UNPUBLISHED DATA.

More…

Neutron Total Cross-Sections on Nuclei at Fermilab Energies

Ramana Murthy, P.V. ; Ayre, Cyril A. ; Gustafson, H.Richard ; et al.
Nucl.Phys.B 92 (1975) 269-308, 1975.
Inspire Record 2076 DOI 10.17182/hepdata.32056

We have measured total cross sections for neutrons on protons, deuteriom, beryllium, carbon, aluminium, iron, copper, cadmium, tungsten, lead, and uranium for momenta between 30 and 300 GeV/ c . The measurements were carried out in a small-angle neutral beam at Fermilab. Typical accuracy of the data is 0.5 to 1%. The cross sections are consistent with an A 0.77±0.01 dependence over the entire momentum range. The cross sections are compared with theoretical predictions. Agreement is found only if inelastic screening is included. Nuclear radii obtained from our data are in good agreement with previous determinations.

11 data tables

No description provided.

No description provided.

No description provided.

More…

Neutron-Proton Total Cross-Sections from 40-GeV/c to 280-GeV/c

Longo, Michael J. ; Ayre, Cyril A. ; Gustafson, H.Richard ; et al.
Phys.Rev.Lett. 33 (1974) 725, 1974.
Inspire Record 89896 DOI 10.17182/hepdata.21237

We present results of measurements of the n−p total cross section between 30 and 280 GeV/c. The measurements were carried out with a neutron beam by using the standard transmission technique and a liquid-hydrogen target. A total-absorption calorimeter was used to determine the neutron energy. Our measurements, which have an accuracy of ∼1%, indicate a smooth rise of approximately 1.5 mb between 50 and 280 GeV/c. The combined n−p and p−p data above 20 GeV/c are well fitted by the expression σ=38.4+0.85|ln(s95)|1.47 mb.

1 data table

MOST DATA TAKEN WITH 300 GEV/C INCIDENT PROTONS TO PRODUCE THE NEUTRON BEAM, WITH SOME ALSO USING 200 GEV/C PROTONS.