We present data of several rescattering observables measured inn p elastic scattering between 0.80 and 1.10 GeV. The SATURNE II polarized beam of free neutrons obtained from the break-up of polarized deuterons was scattered on the Saclay polarized frozen-spin proton target. Three different configurations of beam and target polarization directions were used: the observablesDonon andKonno were measured with the normal-normal spin configuration at eight energies;Nonkk,Dos″ok andKos″ko were determined with the longitudinal-longitudinal configuration at six energies;Nonsk,Dos″ok andKos″so with the sideway-longitudinal configuration at six energies. Part of the data was obtained with an unpolarized CH2 target where only the two spin-index polarization transfer parametersKos″ko andKos″so were determined. Data are compared with phase shift analyses predictions and with the LAMPF results at 0.788 GeV. Present results are the first measurements of rescattering observables above 0.80 GeV. They provide an important contribution to any future theoretical or phenomenological analysis.
No description provided.
No description provided.
No description provided.
The depolarization parameter D onon in p p elastic scattering has been measured at LEAR for thirteen momenta between 679 and 1550 MeV/c in the backward angular region. Striking disagreement with theoretical models is observed.
No description provided.
No description provided.
No description provided.
In order to improve existing I=0 phase shift solutions, the spin correlation parameter ANN and the analyzing powers A0N and AN0 have been measured in n-p elastic scattering over an angular range of 50°–150° (c.m.) at three neutron energies (220, 325, and 425 MeV) to an absolute accuracy of ±0.03. The data have a profound effect on various phase parameters, particularly the P11, D23, and ε1 phase parameters which in some cases change by almost a degree. With the exception of the highest energy, the data support the predictions of the latest version of the Bonn potential. Also, the analyzing power data (A0N and AN0) measured at 477 MeV in a different experiment over a limited angular range [60°–80° (c.m.)] are reported here.
The beam analysing power at incident kinetic energy 220 MeV. Additional systematic uncertainty of +- 0.015 and a scalar error of 3.5 PCT.
The beam analysing power at incident kinetic energy 325 MeV. Additional systematic uncertainty of +- 0.018 and a scalar error of 3.1 PCT.
The beam analysing power at incident kinetic energy 425 MeV. Additional systematic uncertainty of +- 0.022 and a scalar error of 3.3 PCT.
A precise measurement of p̄p elastic scattering in the Coulomb-strong interaction interference region was performed at the CERN Sp̄pS Collider at a centre-of-mass energy of 541 GeV. The ratio of the real to the imaginary part of the forward elastic scattering amplitude was found to be ρ = 0.135 ± 0.015. The slope of the exponential fall off of the strong interaction part was also measured to be b = 15.5 ± 0.1 GeV −2 .
No description provided.
Real part of amplitude extracted using a more precise UA4 measurement. (1 +RE(AMP)/IM(AMP)**2)SIG(TOT) = 63.5 +- 1.5 MB (Bozzo et al. PL 147B(1984)392).
We present a total of 191 and 203 data points of the elastic neutron-protonspin correlation parameters A ookk and A oosk , respectively. Both observables were measured in a large angular interval. The observable A ookk was measured from 0.312 to 1.10 GeV and A oosk from 0.80 to 1.10 GeV. The SATURNE II polarized beam of free neutrons obtained from the break-up of polarized deuterons was scattered on the polarized Saclay frozen-spin proton target. The beam polarization was oriented either along the beam direction or sideways, the target polarization was oriented longitudinally. Data are compared with phase-shift analyses predictions and with the PSI, LAMPF and SATURNE II results. Present results provide an important contribution to any future theoretical or phenomenological analysis.
No description provided.
No description provided.
No description provided.
We present the measurements of the spin correlation parameterAookk(np). A longitudinally polarized beam of free neutrons obtained from the break-up of polarized deuterons was scattered on the longitudinally polarized Saclay frozen-spin proton target. Measurements were carried out at SATURNE II, at neutron beam kinetic energies of 0.63, 0.88, 0.98 and 1.08 GeV. The data points cover the angular region from about 40° to 110° CM. The observed angular dependence ofAookk(np) at 0.63 GeV agree with the phase shift analysis predictions except at small angles.
First set of data is with neutron counter hodoscope. Second is using a charge-exchange in the carbon block.
No description provided.
No description provided.
Results are presented for the spin-spin correlation parameters CSS and CLS for free np elastic scattering at neutron beam kinetic energies of 484, 634, 720, and 788 MeV and c.m. angles between 25° and 80°. The measurements were performed with a polarized neutron beam and a polarized proton target. These are the first measurements of this type to be reported in the forward angular region with a free polarized neutron beam. The observables CSS and CLS are both small at all energies, except for CLS at 788 MeV, which is larger than phase-shift analysis predictions by more than one standard deviation for most of the measured points.
No description provided.
No description provided.
No description provided.
Final results are presented for the spin-spin correlation parameters CSL and CLL for np elastic scattering with a polarized neutron beam incident on a polarized proton target. The beam kinetic energies are 484, 634, and 788 MeV, and the c.m. angular range is 80°-180°. These data will contribute significantly to the determination of the isospin-0 amplitudes in the energy range from 500 to 800 MeV.
Pure np elastic scattering spin variables. CLL and CSL derived from measured combined spin variable. Thus the errors on CLL and CSL are slightly correlated. There are also additional systematic errors of 7 pct associated with beam and 3.3 pct target polarizations respectively.
Pure np elastic scattering spin variables. CLL and CSL derived from measured combined spin variable. Thus the errors on CLL and CSL are slightly correlated. There are also additional systematic errors of 7 pct associated with beam and 3.3 pct target polarizations respectively.
Pure np elastic scattering spin variables. CLL and CSL derived from measured combined spin variable. Thus the errors on CLL and CSL are slightly correlated. There are also additional systematic errors of 7 pct associated with beam and 3.3 pct target polarizations respectively.
The mixed spin-spin correlation parameter Cσσ≈0.5CSS−0.8CSL for np elastic scattering was measured for incident-neutron-beam kinetic energies of 484, 634, and 788 MeV over the center-of-mass angular range 75°-180°. These Cσσ data are important for determining the I=0 nucleon-nucleon amplitudes and provide strong constraints on the phase-shift solutions. It was found that the P11, S13, and D13 isospin-0 partial waves are most strongly affected.
Mixed spin parameter POL.POL(NAME=CXX) is given by 0.475 * CSS + 0.088 CNN + 0.1390 CLL - 0.744 CSL.
Mixed spin parameter POL.POL(NAME=CXX) is given by 0.506 * CSS + 0.064 CNN + 0.163 CLL - 0.809 CSL.
Mixed spin parameter POL.POL(NAME=CXX) is given by 0.528 * CSS + 0.050 CNN + 0.178 CLL - 0.824 CSL.
The spin-correlation parameter Ann for free n-p elastic scattering has been measured for the first time for incident-neutron-beam energy En=790 MeV and c.m. angles 48°≤θ*≤149°. The data are compared with the widely differing predictions of several phase-shift analyses, clearly favoring one of them. They also are compared with recently published quasifree Ann data for the more limited c.m. angular region 98°≲θ*≲122°.
No description provided.