A measurement of the $\bjet$ production cross section is presented for events containing a $Z$ boson produced in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV, using data corresponding to an integrated luminosity of 2 fb$^{-1}$ collected by the CDF II detector at the Tevatron. $Z$ bosons are selected in the electron and muon decay modes. Jets are considered with transverse energy $E_T>20$ GeV and pseudorapidity $|\eta|<1.5$ and are identified as $\bjets$ using a secondary vertex algorithm. The ratio of the integrated $Z+\bjet$ cross section to the inclusive $Z$ production cross section is measured to be $3.32 \pm 0.53 {\rm (stat.)} \pm 0.42 {\rm (syst.)}\times 10^{-3}$. This ratio is also measured differentially in jet $E_T$, jet $\eta$, $Z$-boson transverse momentum, number of jets, and number of $\bjets$. The predictions from leading order Monte Carlo generators and next-to-leading-order QCD calculations are found to be consistent with the measurements within experimental and theoretical uncertainties.
Ratio of integrated Z0 + bjet cross section to inclusive Z0 production.
Ratio of the Z0 + bjet to Z0 cross section as a function of the bjet ET.
Ratio of the Z0 + bjet to Z0 cross section as a function of the bjet pseudorapidity.
The inclusive cross section for J/ψ production times the branching ratio B(J/ψ→μ+μ−) has been measured in the forward pseudorapidity region: B×dσ[p¯+p→J/ψ(pT>10GeV/c,2.1<|η|<2.6)+X]/dη=192±9(stat)±29(syst)pb. The results are based on 74.1±5.2pb−1 of data collected by the CDF Collaboration at the Fermilab Tevatron Collider. The measurements extend earlier measurements of the D0 Collaboration to higher pTJ/ψ. In the kinematic range where the experiments partially overlap, these data are in good agreement with previous measurements.
The integrated cross section for J/PSI --> MU+ MU- decay.
Cross section as a function of PT. Statistical errors only.
The transition between photoproduction and deep-inelastic scattering is investigated in jet production at the HERA ep collider, using data collected by the H1 experiment. Measurements of the differential inclusive jet cross-sections dsigep/dEt* and dsigmep/deta*, where Et* and eta* are the transverse energy and the pseudorapidity of the jets in the virtual photon-proton centre of mass frame, are presented for 0 < Q2 < 49 GeV2 and 0.3 < y < 0.6. The interpretation of the results in terms of the structure of the virtual photon is discussed. The data are best described by QCD calculations which include a partonic structure of the virtual photon that evolves with Q2.
The ET differential jet cross section in the virtual-photon CM frame.
The ET differential jet cross section in the virtual-photon CM frame.
The ET differential jet cross section in the virtual-photon CM frame.
Transverse momentum spectra of charged particles produced in deep inelastic scattering are measured as a function of the kinematic variables x_B and Q2 using the H1 detector at the ep collider HERA. The data are compared to different parton emission models, either with or without ordering of the emissions in transverse momentum. The data provide evidence for a relatively large amount of parton radiation between the current and the remnant systems.
Charged particle PT distribution in the pseudorapidity interval 1.5 to 2.5.
Charged particle PT distribution in the pseudorapidity interval 1.5 to 2.5.
Charged particle PT distribution in the pseudorapidity interval 1.5 to 2.5.
Photoproduction of 2-jet events is studied with the H1 detector at HERA. Parton cross sections are extracted from the data by an unfolding method using leading order parton-jet correlations of a QCD generator. The gluon distribution in the photon is derived in the fractional momentum range $0.04\le x_\gamma \le 1$ at the average factorization scale $75$ GeV$~2$.
No description provided.
No description provided.
Gluon density of the photon (alpha is the fine structure constant).
Cross sections are presented for the inclusive production of charged particles measured in electron-proton collisions at low Q 2 with the H1 detector at HERA. The transverse momentum distribution extends up to 8 GeV/ c . Its shape is found to be harder than that observed in p p collisions at comparable centre-of-mass energies √S γp ≈ √S p p ≈ 200 GeV , and also harder than in γp collisions at lower energies √ S γp ≈ 18 GeV. Results from quantum chromodynamics (QCD) calculations agree with the measured transverse momentum and pseudorapidity cross sections.
No description provided.
No description provided.