A measurement of the cross-section for pp$ \rightarrow$Z$ \rightarrow$e$^+$e$^-$ is presented using data at $\sqrt{s}=7$ TeV corresponding to an integrated luminosity of 0.94 fb$^{-1}$. The process is measured within the kinematic acceptance $p_{\mathrm{T}}>20$GeV/$c$ and $2<\eta<4.5$ for the daughter electrons and dielectron invariant mass in the range 60-120 GeV/$c^2$. The cross-section is determined to be $$\sigma(pp \rightarrow Z \rightarrow e^+ e^- )=76.0\pm0.8\pm2.0\pm2.6{\rm pb}$$ where the first uncertainty is statistical, the second is systematic and the third is the uncertainty in the luminosity. The measurement is performed as a function of Z rapidity and as a function of an angular variable which is closely related to the Z transverse momentum. The results are compared with previous LHCb measurements and with theoretical predictions from QCD.
Cross-section of $pp \to Z \to e^+ e^-$ integrated over $Z$ rapidity. The first quoted uncertainty is statistical, the second is the experimental systematic uncertainty, the third is the luminosity uncertainty and the fourth uncertainty is due to FSR correction.
Differential cross-section of $pp \to Z \to e^+ e^-$ as function $Z$ rapidity. The first quoted uncertainty is statistical. The second and third uncertainties are the uncorrelated and correlated systematic uncertainties respectively. The fourth uncertainty is due to FSR correction.
Differential cross-section of $pp \to Z \to e^+ e^-$ as function of $\phi^*$ kinematic variable constructed from electron pair azimuthal angle and pseudorapidity and correlated to $Z$ tranverse momentum. The first quoted uncertainty is statistical. The second and third uncertainties are the uncorrelated and correlated systematic uncertainties respectively. The fourth uncertainty is due to FSR correction.
This Letter reports a measurement of the cross section for producing pairs of central prompt isolated photons in proton-antiproton collisions at a total energy of 1.96 TeV using data corresponding to 9.5/fb integrated luminosity collected with the CDF II detector at the Fermilab Tevatron. The measured differential cross section is compared to three calculations derived from the theory of strong interactions. These include a prediction based on a leading order matrix element calculation merged with parton shower, a next-to-leading order, and a next-to-next-to-leading order calculation. The first and last calculations reproduce most aspects of the data, thus showing the importance of higher-order contributions for understanding the theory of strong interaction and improving measurements of the Higgs boson and searches for new phenomena in diphoton final states.
The measured differential cross sections for $M_{\gamma\gamma}$ , together with the predictions from the Sherpa and NNLO Monte Carlos.
The measured differential cross sections for $M_{\gamma\gamma}$ when $P_T > M_{\gamma\gamma}$ , together with the predictions from the Sherpa and NNLO Monte Carlos.
The measured differential cross sections for $M_{\gamma\gamma}$ when $P_T < M_{\gamma\gamma}$ , together with the predictions from the Sherpa and NNLO Monte Carlos.
Multiplicities in semi-inclusive deep-inelastic scattering are presented for each charge state of \pi^\pm and K^\pm mesons. The data were collected by the HERMES experiment at the HERA storage ring using 27.6 GeV electron and positron beams incident on a hydrogen or deuterium gas target. The results are presented as a function of the kinematic quantities x_B, Q^2, z, and P_h\perp. They represent a unique data set for identified hadrons that will significantly enhance our understanding of the fragmentation of quarks into final-state hadrons in deep-inelastic scattering.
pi+ multiplicities from HERMES, Target: H, Target: D, VM subtracted.
pi- multiplicities from HERMES, Target: H, Target: D, VM subtracted.
K+ multiplicities from HERMES, Target: H, Target: D, VM subtracted.
The energy flow created in pp collisions at is studied within the pseudorapidity range 1.9<η<4.9 with data collected by the LHCb experiment. The measurements are performed for inclusive minimum-bias interactions, hard scattering processes and events with an enhanced or suppressed diffractive contribution. The results are compared to predictions given by Pythia-based and cosmic-ray event generators, which provide different models of soft hadronic interactions.
Charged energy flow for inclusive mininum bias events, requiring at least one charged particle in the pseudorapidity range 1.9 < eta < 4.9.
Charged energy flow for hard scattering events, requiring at least one charged particle with transverse momentum > 3 GeV and in the pseudorapidity range 1.9 < eta < 4.9.
Charged energy flow for diffractive enriched events, requiring no charged particles in the pseudorapidity range -3.5 < eta < -1.5 and at least one charged particle in the pseudorapidity range 1.9 < eta < 4.9.
The production of J/psi mesons is studied with the LHCb detector using data from pp collisions at sqrt(s)=2.76 TeV corresponding to an integrated luminosity of 71 nb^-1. The differential cross-section for inclusive J/psi production is measured as a function of its transverse momentum pT. The cross-section in the fiducial region 0<pT<12 GeV/c and rapidity 2.0<y<4.5 is measured to be 5.6 +/- 0.1(stat) +/- 0.4 (syst) mub, with the assumption of unpolarised J/psi production. The fraction of J/psi production from b-hadron decays is measured to be (7.1 +/- 0.6 (stat) +/- 0.7 (syst)) %.
Differential cross-section $d\sigma/dp_T$ at $\sqrt{s}$ = 2.76 TeV for inclusive $J/\psi$ production in bins of $p_T$. The rapidity range covered is $2.0 < y < 4.5$. The first uncertainty is statistical and the second is systematic.
The measurement of J/{psi} azimuthal anisotropy is presented as a function of transverse momentum for different centralities in Au+Au collisions at {sqrt{s_{NN}}} = 200 GeV. The measured J/{psi} elliptic flow is consistent with zero within errors for transverse momentum between 2 and 10 GeV/c. Our measurement suggests that J/{psi} with relatively large transverse momentum are not dominantly produced by coalescence from thermalized charm quarks, when comparing to model calculations.
J/Psi azimuthal anisotropy v2 vs pT measured via the dielectron channel in 0-10%, 10-40%, and 40-80% central Au+Au collisions at 200 GeV. The brackets represent systematic errors. The boxes show the estimated maximum possible range of v2 if the nonflow influence is corrected. The mean pT in each bin for v2 calculation is drawn, but is shifted a little for some centralities so that all points can be seen clearly.
J/Psi azimuthal anisotropy v2 vs pT measured via the dielectron channel in 0-80% central Au+Au collisions at 200 GeV. The brackets represent systematic errors. The boxes show the estimated maximum possible range of v2 if the nonflow influence is corrected.
Jet-medium interactions are studied via a multi-hadron correlation technique (called "2+1"), where a pair of back-to-back hadron triggers with large transverse momentum is used as a proxy for a di-jet. This work extends the previous analysis for nearly-symmetric trigger pairs with the highest momentum threshold of trigger hadron of 5 GeV/$c$ with the new calorimeter-based triggers with energy thresholds of up to 10 GeV and above. The distributions of associated hadrons are studied in terms of correlation shapes and per-trigger yields on each trigger side. In contrast with di-hadron correlation results with single triggers, the associated hadron distributions for back-to-back triggers from central Au+Au data at $\sqrt{s_{NN}}$=200 GeV show no strong modifications compared to d+Au data at the same energy. An imbalance in the total transverse momentum between hadrons attributed to the near-side and away-side of jet-like peaks is observed. The relative imbalance in the Au+Au measurement with respect to d+Au reference is found to increase with the asymmetry of the trigger pair, consistent with expectation from medium-induced energy loss effects. In addition, this relative total transverse momentum imbalance is found to decrease for softer associated hadrons. Such evolution indicates the energy missing at higher associated momenta is converted into softer hadrons.
Projections of 2-D correlation functions on $\Delta \phi$ (a) (with $|\Delta \eta|$ < 1.0) and $\Delta \eta$ (b) (with $|\Delta \phi|$ < 0.7) for the hadrons associated with their respective triggers (T1 for near-side, T2 for away–side) are shown for d+Au (circles) and central 0-20% Au+Au (squares).
Projections of 2-D correlation functions on $\Delta \phi$ (a) (with $|\Delta \eta|$ < 1.0) and $\Delta \eta$ (b) (with $|\Delta \phi|$ < 0.7) for the hadrons associated with their respective triggers (T1 for near-side, T2 for away–side) are shown for d+Au (circles) and central 0-20% Au+Au (squares).
Projections of 2-D correlation functions on $\Delta \phi$ (a) (with $|\Delta \eta|$ < 1.0) and $\Delta \eta$ (b) (with $|\Delta \phi|$ < 0.7) for the hadrons associated with their respective triggers (T1 for near-side, T2 for away–side) are shown for d+Au (circles) and central 0-20% Au+Au (squares).
The jet fragmentation function is measured with direct photon-hadron correlations in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. The p_T of the photon is an excellent approximation to the initial p_T of the jet and the ratio z_T=p_T^h/p_T^\gamma is used as a proxy for the jet fragmentation function. A statistical subtraction is used to extract the direct photon-hadron yields in Au+Au collisions while a photon isolation cut is applied in p+p. I_ AA, the ratio of jet fragment yield in Au+Au to that in p+p, indicates modification of the jet fragmentation function. Suppression, most likely due to energy loss in the medium, is seen at high z_T. The fragment yield at low z_T is enhanced at large angles. Such a trend is expected from redistribution of the lost energy into increased production of low-momentum particles.
Direct photon-hadron pair per-trigger yields vs Delta-phi (Au+Au and p+p)
Integrated per-trigger yields and I_AA vs xi
Integrated per-trigger yields and I_AA vs xi
A measurement is presented of the ZZ production cross section in the ZZ to 2l 2l' decay mode with l = e, mu and l' = e, mu, tau in proton-proton collisions at sqrt(s) = 7 TeV with the CMS experiment at the LHC. Results are based on data corresponding to an integrated luminosity of 5.0 inverse femtobarns. The measured cross section sigma(pp to ZZ) = 6.24 [+0.86/-0.80] (stat.) [+0.41/-0.32] (syst.) +/- 0.14 (lumi.) pb is consistent with the standard model predictions. The following limits on ZZZ and ZZ gamma anomalous trilinear gauge couplings are set at 95% confidence level: -0.011 < f[4;Z] < 0.012, -0.012 < f[5;Z] < 0.012, -0.013 < f[4;gamma] < 0.015, and -0.014 < f[5,gamma] < 0.014.
The measured total ZZ cross section. The (sys) error is the total systematic error, luminosity uncertainty is separated.
The cross sections for inelastic photoproduction of J/psi and psi^prime mesons have been measured in ep collisions with the ZEUS detector at HERA, using an integrated luminosity of 468 pb-1 collected in the period 1996--2007. The psi^prime to J/psi cross section ratio was measured in the range 0.55 < z < 0.9 and 60 < W < 190 GeV as a function of W, z and p_T. Here W denotes the photon-proton centre-of-mass energy, z is the fraction of the incident photon energy carried by the meson and p_T is the transverse momentum of the meson with respect to the beam axis. The J/psi cross sections were measured for 0.1 < z < 0.9, 60 < W < 240 GeV and p_T > 1 GeV. Theoretical predictions within the non-relativistic QCD framework including NLO colour--singlet and colour--octet contributions were compared to the data, as were predictions based on the k_T--factorisation approach.
Cross section ratio PSIPRIME (PSI(2S)) to J/PSI as a function of PT.
Cross section ratio PSIPRIME (PSI(2S)) to J/PSI as a function of W.
Cross section ratio PSIPRIME (PSI(2S)) to J/PSI as a function of Z.