Date

Charged and strange hadron elliptic flow in Cu+Cu collisions at $\sqrt{s_{NN}}$ = 62.4 and 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 81 (2010) 044902, 2010.
Inspire Record 843985 DOI 10.17182/hepdata.98575

We present the results of an elliptic flow analysis of Cu+Cu collisions recorded with the STAR detector at 62.4 and 200GeV. Elliptic flow as a function of transverse momentum is reported for different collision centralities for charged hadrons and strangeness containing hadrons $K_{S}^{0}$, $\Lambda$, $\Xi$, $\phi$ in the midrapidity region $|eta|<1.0$. Significant reduction in systematic uncertainty of the measurement due to non-flow effects has been achieved by correlating particles at midrapidity, $|\eta|<1.0$, with those at forward rapidity, $2.5<|\eta|<4.0$. We also present azimuthal correlations in p+p collisions at 200 GeV to help estimating non-flow effects. To study the system-size dependence of elliptic flow, we present a detailed comparison with previously published results from Au+Au collisions at 200 GeV. We observe that $v_{2}$($p_{T}$) of strange hadrons has similar scaling properties as were first observed in Au+Au collisions, i.e.: (i) at low transverse momenta, $p_T<2GeV/c$, $v_{2}$ scales with transverse kinetic energy, $m_{T}-m$, and (ii) at intermediate $p_T$, $2<p_T<4GeV/c$, it scales with the number of constituent quarks, $n_q$. We have found that ideal hydrodynamic calculations fail to reproduce the centrality dependence of $v_{2}$($p_{T}$) for $K_{S}^{0}$ and $\Lambda$. Eccentricity scaled $v_2$ values, $v_{2}/\epsilon$, are larger in more central collisions, suggesting stronger collective flow develops in more central collisions. The comparison with Au+Au collisions which go further in density shows $v_{2}/\epsilon$ depend on the system size, number of participants $N_{part}$. This indicates that the ideal hydrodynamic limit is not reached in Cu+Cu collisions, presumably because the assumption of thermalization is not attained.

26 data tables

Charged hadron azimuthal correlations as a function of pT in 0-60% Cu+Cu and p+p collisions at 200 GeV using TPC and FTPC flow vectors.

Charged hadron azimuthal anisotropy v2 as a function of pT in 0-60% Cu+Cu collisions at 200 GeV using TPC flow vectors, and those with subtracting the azimuthal correlations in p+p collisions.

Charged hadron azimuthal anisotropy v2 as a function of pT in 0-60% Cu+Cu collisions at 200 GeV using FTPC flow vectors, and those with subtracting the azimuthal correlations in p+p collisions.

More…

Upsilon cross section in p+p collisions at sqrt(s) = 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.D 82 (2010) 012004, 2010.
Inspire Record 842959 DOI 10.17182/hepdata.97119

We report on a measurement of the Upsilon(1S+2S+3S) -> e+e- cross section at midrapidity in p+p collisions at sqrt(s)=200 GeV. We find the cross section to be 114 +/- 38 (stat.) +23,-24 (syst.) pb. Perturbative QCD calculations at next-to-leading order in the Color Evaporation Model are in agreement with our measurement, while calculations in the Color Singlet Model underestimate it by 2 sigma. Our result is consistent with the trend seen in world data as a function of the center-of-mass energy of the collision and extends the availability of Upsilon data to RHIC energies. The dielectron continuum in the invariant mass range near the Upsilon is also studied to obtain a combined cross section of Drell-Yan plus (b b-bar) -> e+e-.

7 data tables

Unlike-sign pair invariant mass distribution with |y_ee| < 0.5.

Like-sign pair invariant mass distribution with |y_ee| < 0.5.

Background subtracted unlike-sign invariant mass distribution.

More…

Transverse momentum and pseudorapidity distributions of charged hadrons in pp collisions at sqrt(s) = 0.9 and 2.36 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
JHEP 02 (2010) 041, 2010.
Inspire Record 845323 DOI 10.17182/hepdata.54829

Measurements of inclusive charged-hadron transverse-momentum and pseudorapidity distributions are presented for proton-proton collisions at sqrt(s) = 0.9 and 2.36 TeV. The data were collected with the CMS detector during the LHC commissioning in December 2009. For non-single-diffractive interactions, the average charged-hadron transverse momentum is measured to be 0.46 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 0.9 TeV and 0.50 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 2.36 TeV, for pseudorapidities between -2.4 and +2.4. At these energies, the measured pseudorapidity densities in the central region, dN(charged)/d(eta) for |eta| < 0.5, are 3.48 +/- 0.02 (stat.) +/- 0.13 (syst.) and 4.47 +/- 0.04 (stat.) +/- 0.16 (syst.), respectively. The results at 0.9 TeV are in agreement with previous measurements and confirm the expectation of near equal hadron production in p-pbar and pp collisions. The results at 2.36 TeV represent the highest-energy measurements at a particle collider to date.

8 data tables

Measured differential yield of charged hadrons as a function of transverse momentum for pseudorapidities 0.1, 0.3, 0.5 and 0.7 for centre-of-mass energy 900 GeV.

Measured differential yield of charged hadrons as a function of transverse momentum for pseudorapidities 0.9, 1.1, 1.3 and 1.5 for centre-of-mass energy 900 GeV.

Measured differential yield of charged hadrons as a function of transverse momentum for pseudorapidities 1.7, 1.9, 2.1 and 2.3 for centre-of-mass energy 900 GeV.

More…

Longitudinal scaling property of the charge balance function in Au + Au collisions at 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Lett.B 690 (2010) 239-244, 2010.
Inspire Record 844983 DOI 10.17182/hepdata.97118

We present measurements of the charge balance function, from the charged particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au collisions at 200 GeV using the STAR detector at RHIC. We observe that the balance function is boost-invariant within the pseudorapidity coverage [-1.3, 1.3]. The balance function properly scaled by the width of the observed pseudorapidity window does not depend on the position or size of the pseudorapidity window. This scaling property also holds for particles in different transverse momentum ranges. In addition, we find that the width of the balance function decreases monotonically with increasing transverse momentum for all centrality classes.

48 data tables

Balance functions in pseudorapidity windows -0.6 < eta < 0 for 0.15 < pT < 2 GEV/c.

Balance functions in pseudorapidity windows 0 < eta < 1 for 0.15 < pT < 2 GEV/c.

Balance functions in pseudorapidity windows -1 < eta < 0.6 for 0.15 < pT < 2 GEV/c.

More…

Trends in Yield and Azimuthal Shape Modification in Dihadron Correlations in Relativistic Heavy Ion Collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 104 (2010) 252301, 2010.
Inspire Record 845169 DOI 10.17182/hepdata.146557

Fast parton probes produced by hard scattering and embedded within collisions of large nuclei have shown that partons suffer large energy loss and that the produced medium may respond collectively to the lost energy. We present measurements of neutral pion trigger particles at transverse momenta p^t_T = 4-12 GeV/c and associated charged hadrons (p^a_T = 0.5-7 GeV/c) as a function of relative azimuthal angle Delta Phi at midrapidity in Au+Au and p+p collisions at sqrt(s_NN) = 200 GeV. These data lead to two major observations. First, the relative angular distribution of low momentum hadrons, whose shape modification has been interpreted as a medium response to parton energy loss, is found to be modified only for p^t_T &lt; 7 GeV/c. At higher p^t_T, the data are consistent with unmodified or very weakly modified shapes, even for the lowest measured p^a_T. This observation presents a quantitative challenge to medium response scenarios. Second, the associated yield of hadrons opposite to the trigger particle in Au+Au relative to that in p+p (I_AA) is found to be suppressed at large momentum (IAA ~ 0.35-0.5), but less than the single particle nuclear modification factor (R_AA ~0.2).

16 data tables

Average away-side $I^{head}_{AA}$ above 2 GeV/$c$ for various $\pi^0$ trigger momenta in central and midcentral collisions where $|\Delta\phi - \pi| < \pi/6$. Note: a 6% scale uncertainty applies to all $I_{AA}$ values.

Away-side jet widths from a Gaussian fit by $h^{\pm}$ partner momentum for various $\pi^0$ trigger momenta in $p+p$ collisions.

Away-side jet widths from a Gaussian fit by $h^{\pm}$ partner momentum for various $\pi^0$ trigger momenta in Au+Au collisions.

More…

Measurement of the Beam Asymmetry $\Sigma$ in the Forward Direction for pi0 Photoproduction

The CBELSA/TAPS collaboration Sparks, N. ; Crede, V. ; Anisovich, A.V. ; et al.
Phys.Rev.C 81 (2010) 065210, 2010.
Inspire Record 848088 DOI 10.17182/hepdata.55293

Photoproduction of neutral pions has been studied with the CBELSA/TAPS detector for photon energies between 0.92 and 1.68~GeV at the electron accelerator ELSA. The beam asymmetry~$\Sigma$ has been extracted for $115^\circ < \theta_{\rm c.m.} < 155^\circ$ of the $\pi^0$~meson and for $\theta_{\rm c.m.} < 60^\circ$. The new beam asymmetry data improve the world database for photon energies above 1.5~GeV and, by covering the very forward region, extend previously published data for the same reaction by our collaboration. The angular dependence of $\Sigma$ shows overall good agreement with the SAID parameterization.

23 data tables

Photon beam asymmetry at incident photon energy 0.932 GeV.

Photon beam asymmetry at incident photon energy 0.965 GeV.

Photon beam asymmetry at incident photon energy 0.998 GeV.

More…

Charged-particle multiplicities in pp interactions at sqrt(s) = 900 GeV measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, G. ; Abat, E. ; Abbott, B. ; et al.
Phys.Lett.B 688 (2010) 21-42, 2010.
Inspire Record 849050 DOI 10.17182/hepdata.54850

The first measurements from proton-proton collisions recorded with the ATLAS detector at the LHC are presented. Data were collected in December 2009 using a minimum-bias trigger during collisions at a centre-of-mass energy of 900 GeV. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity, and the relationship between mean transverse momentum and charged-particle multiplicity are measured for events with at least one charged particle in the kinematic range |eta|<2.5 and pT>500 MeV. The measurements are compared to Monte Carlo models of proton-proton collisions and to results from other experiments at the same centre-of-mass energy. The charged-particle multiplicity per event and unit of pseudorapidity at eta = 0 is measured to be 1.333 +/- 0.003 (stat.) +/- 0.040 (syst.), which is 5-15% higher than the Monte Carlo models predict.

5 data tables

Average value of charged particle multiplicity per event and unit of pseudorapidity in the pseudorapidity range from -0.2 to 0.2.

Charged particle multiplicity as a function of pseudorapidity.

Charged particle multiplicity as a function of transverse momentum.

More…

Observation of an Antimatter Hypernucleus

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Science 328 (2010) 58-62, 2010.
Inspire Record 848409 DOI 10.17182/hepdata.104929

Nuclear collisions recreate conditions in the universe microseconds after the Big Bang. Only a very small fraction of the emitted fragments are light nuclei, but these states are of fundamental interest. We report the observation of antihypertritons - composed of an antiproton, antineutron, and antilambda hyperon - produced by colliding gold nuclei at high energy. Our analysis yields 70 +- 17 antihypertritons and 157 +- 30 hypertritons. The measured yields of hypertriton (antihypertriton) and helium3 (antihelium3) are similar, suggesting an equilibrium in coordinate and momentum space populations of up, down, and strange quarks and antiquarks, unlike the pattern observed at lower collision energies. The production and properties of antinuclei, and nuclei containing strange quarks, have implications spanning nuclear/particle physics, astrophysics, and cosmology.

5 data tables

(A, B) show the invariant mass distribution of the daughter 3He + π. The open circles represent the signal candidate distributions, while the solid black lines are background distributions. The blue dashed lines are signal (Gaussian) plus background (double exponential) combined fit.

(A, B) show the invariant mass distribution of the daughter 3He + π. The open circles represent the signal candidate distributions, while the solid black lines are background distributions. The blue dashed lines are signal (Gaussian) plus background (double exponential) combined fit. A (B) shows the 3ΛH (3Λ¯H) candidate distributions.

The 3ΛH (solid squares) and Λ (open circles) yield distributions versus cτ. The solid lines represent the cτ fits. The inset depicts the $\chi^2$ distribution of the best 3ΛH cτ fit. The error bars represent the statistical uncertaintiesonly.

More…

Elliptic and hexadecapole flow of charged hadrons in Au+Au collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 105 (2010) 062301, 2010.
Inspire Record 850211 DOI 10.17182/hepdata.143006

Differential measurements of the elliptic (v_2) and hexadecapole (v_4) Fourier flow coefficients are reported for charged hadrons as a function of transverse momentum (p_T) and collision centrality or the number of participant nucleons (N_part) for Au+Au collisions at sqrt(s_NN)=200 GeV. The v_{2,4} measurements at pseudorapidity |\eta|<=0.35 obtained with four separate reaction plane detectors positioned in the range 1.0<|\eta|<3.9 show good agreement, indicating the absence of significant \eta-dependent nonflow perturbations. Sizable values for v_4(p_T) are observed with a ratio v_4(p_T,N_part)/v_2^2(p_T,N_part)~0.8 for 50<N_part<200, which is compatible with the combined effects of a finite viscosity and initial eccentricity fluctuations. For N_part>200 this ratio increases up to 1.7 in the most central collisions.

7 data tables

Glauber quantities ($N_{part}$, $N_{coll}$, $b$) for Au+Au collisions at 200 GeV (PHENIX Run 2007)

Event-plane resolution factors vs. $N_{part}$ for $v_2$ and $v_4$ measurements for the indicated event planes.

Comparison of $v_2$ vs. $N_{part}$ and $v_4$ vs. $N_{part}$ for charged hadrons obtained with several reaction plane detectors for the $p_T$ selections indicated.

More…

Charged-particle multiplicity measurement in proton-proton collisions at sqrt(s) = 0.9 and 2.36 TeV with ALICE at LHC

The ALICE collaboration Aamodt, K. ; Abel, N. ; Abeysekara, U. ; et al.
Eur.Phys.J.C 68 (2010) 89-108, 2010.
Inspire Record 852450 DOI 10.17182/hepdata.54742

Charged-particle production was studied in proton-proton collisions collected at the LHC with the ALICE detector at centre-of-mass energies 0.9 TeV and 2.36 TeV in the pseudorapidity range |$\eta$| < 1.4. In the central region (|$\eta$| < 0.5), at 0.9 TeV, we measure charged-particle pseudorapidity density dNch/deta = 3.02 $\pm$ 0.01 (stat.) $^{+0.08}_{-0.05}$ (syst.) for inelastic interactions, and dNch/deta = 3.58 $\pm$ 0.01 (stat.) $^{+0.12}_{-0.12}$ (syst.) for non-single-diffractive interactions. At 2.36 TeV, we find dNch/deta = 3.77 $\pm$ 0.01 (stat.) $^{+0.25}_{-0.12}$ (syst.) for inelastic, and dNch/deta = 4.43 $\pm$ 0.01 (stat.) $^{+0.17}_{-0.12}$ (syst.) for non-single-diffractive collisions. The relative increase in charged-particle multiplicity from the lower to higher energy is 24.7% $\pm$ 0.5% (stat.) $^{+5.7}_{-2.8}$% (syst.) for inelastic and 23.7% $\pm$ 0.5% (stat.) $^{+4.6}_{-1.1}$% (syst.) for non-single-diffractive interactions. This increase is consistent with that reported by the CMS collaboration for non-single-diffractive events and larger than that found by a number of commonly used models. The multiplicity distribution was measured in different pseudorapidity intervals and studied in terms of KNO variables at both energies. The results are compared to proton-antiproton data and to model predictions.

23 data tables

Measured pseudorapidity dependence of DN/DETARAP for INEL collisions at a centre-of-mass energy of 900 GeV.

Measured pseudorapidity dependence of DN/DETARAP for NSD collisions at a centre-of-mass energy of 900 GeV.

Measured pseudorapidity dependence of DN/DETARAP for INEL collisions at a centre-of-mass energy of 2360 GeV.

More…