Date

$\Sigma(1385)^{\pm}$ resonance production in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 83 (2023) 351, 2023.
Inspire Record 2088201 DOI 10.17182/hepdata.134042

Hadronic resonances are used to probe the hadron gas produced in the late stage of heavy-ion collisions since they decay on the same timescale, of the order of 1 to 10 fm/$c$, as the decoupling time of the system. In the hadron gas, (pseudo)elastic scatterings among the products of resonances that decayed before the kinetic freeze-out and regeneration processes counteract each other, the net effect depending on the resonance lifetime, the duration of the hadronic phase, and the hadronic cross sections at play. In this context, the $\Sigma(1385)^{\pm}$ particle is of particular interest as models predict that regeneration dominates over rescattering despite its relatively short lifetime of about 5.5 fm/$c$. The first measurement of the $\Sigma(1385)^{\pm}$ resonance production at midrapidity in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}= 5.02$ TeV with the ALICE detector is presented in this Letter. The resonances are reconstructed via their hadronic decay channel, $\Lambda\pi$, as a function of the transverse momentum ($p_{\rm T}$) and the collision centrality. The results are discussed in comparison with the measured yield of pions and with expectations from the statistical hadronization model as well as commonly employed event generators, including PYTHIA8/Angantyr and EPOS3 coupled to the UrQMD hadronic cascade afterburner. None of the models can describe the data. For $\Sigma(1385)^{\pm}$, a similar behaviour as ${\rm K}^{*} (892)^{0}$ is observed in data unlike the predictions of EPOS3 with afterburner.

11 data tables

$p_{\rm{T}}$-differential yield of $\Sigma^{*+}$ + cc in Pb-Pb collisions with centre-of-mass energy/nucleon=5.02 TeV (0-10% multiplicity class).

$p_{\rm{T}}$-differential yield of $\Sigma^{*+}$ + cc in Pb-Pb collisions with centre-of-mass energy/nucleon=5.02 TeV (30-50% multiplicity class).

$p_{\rm{T}}$-differential yield of $\Sigma^{*+}$ + cc in Pb-Pb collisions with centre-of-mass energy/nucleon=5.02 TeV (50-90% multiplicity class).

More…

Measurement of $J/\psi$ production cross-sections in $pp$ collisions at $\sqrt{s}=5$ TeV

The LHCb collaboration Aaij, R. ; Abdelmotteleb, A.S.W. ; Beteta, C. Abellán ; et al.
JHEP 11 (2021) 181, 2021.
Inspire Record 1915030 DOI 10.17182/hepdata.115512

The production cross-sections of $J/\psi$ mesons in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=5$ TeV are measured using a data sample corresponding to an integrated luminosity of $9.13\pm0.18~\text{pb}^{-1}$, collected by the LHCb experiment. The cross-sections are measured differentially as a function of transverse momentum, $p_{\text{T}}$, and rapidity, $y$, and separately for $J/\psi$ mesons produced promptly and from beauty hadron decays (nonprompt). With the assumption of unpolarised $J/\psi$ mesons, the production cross-sections integrated over the kinematic range $0<p_{\text{T}}<20~\text{GeV}/c$ and $2.0<y<4.5$ are $8.154\pm0.010\pm0.283~\mu\text{b}$ for prompt $J/\psi$ mesons and $0.820\pm0.003\pm0.034~\mu\text{b}$ for nonprompt $J/\psi$ mesons, where the first uncertainties are statistical and the second systematic. These cross-sections are compared with those at $\sqrt{s}=8$ TeV and $13$ TeV, and are used to update the measurement of the nuclear modification factor in proton-lead collisions for $J/\psi$ mesons at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\text{NN}}}=5$ TeV. The results are compared with theoretical predictions.

20 data tables

Double-differential production cross-sections for prompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.

Double-differential production cross-sections for nonprompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.

Single-differential production cross-sections for prompt $J/\psi$ mesons as a function of $p_\text{T}$. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, and the last are uncorrelated systematic uncertainties.

More…

Production of K$^{*}(892)^{0}$ and $\phi(1020)$ in pp and Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.C 106 (2022) 034907, 2022.
Inspire Record 1870141 DOI 10.17182/hepdata.140098

The production of K$^{*}(892)^{0}$ and $\phi(1020)$ mesons in proton-proton (pp) and lead-lead (Pb-Pb) collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV has been measured using the ALICE detector at the Large Hadron Collider (LHC). The transverse momentum ($p_{\mathrm{T}}$) distributions of K$^{*}(892)^{0}$ and $\phi(1020)$ mesons have been measured at midrapidity $(|y|<0.5)$ up to $p_{\mathrm{T}} = 20$ GeV$/c$ in inelastic pp collisions and for several Pb-Pb collision centralities. The collision centrality and collision energy dependence of the average transverse momenta agree with the radial flow scenario observed with stable hadrons, showing that the effect is stronger for more central collisions and higher collision energies. The $\mathrm{K^{*0}/K}$ ratio is found to be suppressed in Pb-Pb collisions relative to pp collisions: this indicates a loss of the measured K$^{*}(892)^{0}$ signal due to rescattering of its decay products in the hadronic phase. In contrast, for the longer-lived $\phi(1020)$ mesons, no such suppression is observed. The nuclear modification factors ($R_{\rm AA}$) of K$^{*}(892)^{0}$ and $\phi(1020)$ mesons are calculated using pp reference spectra at the same collision energy. In central Pb-Pb collisions for $p_{\rm T} > 8$ GeV$/c$, the $R_{\rm AA}$ values of K$^{*}(892)^{0}$ and $\phi(1020)$ are below unity and observed to be similar to those of pions, kaons, and (anti)protons. The $R_{\rm AA}$ values at high $p_{\mathrm T}$ ($>$~8 GeV$/c$) for K$^{*}(892)^{0}$ and $\phi(1020)$ mesons are in agreement within uncertainties for $\sqrt{s_\mathrm{NN}} = 5.02$ and 2.76 TeV.

22 data tables

$p_{T}$-dependent nuclear modification factor of $\rm{K}^{*0}$ (average of particle and anti-particle) meson measured in 0-10% centrality class for Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.

$p_{T}$-dependent nuclear modification factor of $\rm{K}^{*0}$ (average of particle and anti-particle) meson measured in 10-20% centrality class for Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.

$p_{T}$-dependent nuclear modification factor of $\rm{K}^{*0}$ (average of particle and anti-particle) meson measured in 20-30% centrality class for Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.

More…

Measurement of prompt D$^{0}$, $\Lambda_{c}^{+}$, and $\Sigma_{c}^{0,++}$(2455) production in pp collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.Lett. 128 (2022) 012001, 2022.
Inspire Record 1868463 DOI 10.17182/hepdata.127976

The $p_{\rm T}$-differential production cross sections of prompt D$^{0}$, $\Lambda_{\rm c}^{+}$, and $\Sigma_{\rm c}^{0,++}(2455)$ charmed hadrons are measured at midrapidity ($|y| < 0.5$) in pp collisions at $\sqrt{s} = 13$ TeV. This is the first measurement of $\Sigma_{\rm c}^{0,++}$ production in hadronic collisions. Assuming the same production yield for the three $\Sigma_{\rm c}^{0,+,++}$ isospin states, the baryon-to-meson cross section ratios $\Sigma_{\rm c}^{0,+,++}/{\rm D}^{0}$ and $\Lambda_{\rm c}^{+}/{\rm D}^{0}$ are calculated in the transverse momentum ($p_{\rm T}$) intervals $2 < p_{\rm T} < 12$ GeV/$c$ and $1 < p_{\rm T} < 24$ GeV/$c$. Values significantly larger than in e$^{+}$e$^{-}$ collisions are observed, indicating for the first time that baryon enhancement in hadronic collisions also extends to the $\Sigma_{\rm c}$. The feed-down contribution to $\Lambda_{\rm c}^{+}$ production from $\Sigma_{\rm c}^{0,+,++}$ is also reported and is found to be larger than in e$^{+}$e$^{-}$ collisions. The data are compared with predictions from event generators and other phenomenological models, providing a sensitive test of the different charm-hadronisation mechanisms implemented in the models.

7 data tables

$p_\mathrm{T}$-differential cross section of prompt $D^0$ in pp collisions at $\sqrt{s}$ = 13 TeV

$p_\mathrm{T}$-differential cross section of prompt $\Lambda_c^+$ in pp collisions at $\sqrt{s}$ = 13 TeV

$p_\mathrm{T}$-differential cross section of prompt $\Sigma_c^{0,++}$ in pp collisions at $\sqrt{s}$ = 13 TeV

More…

Production of $\Lambda$ and ${\rm K}^{0}_{\rm S}$ in jets in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5$ TeV and pp collisions at $\sqrt{s} = 7$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 827 (2022) 136984, 2022.
Inspire Record 2048607 DOI 10.17182/hepdata.129068

The production of $\Lambda$ baryons and ${\rm K}^{0}_{\rm S}$ mesons (${\rm V}^{0}$ particles) was measured in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV and pp collisions at $\sqrt{s} = 7$ TeV with ALICE at the LHC. The production of these strange particles is studied separately for particles associated with hard scatterings and the underlying event to shed light on the baryon-to-meson ratio enhancement observed at intermediate transverse momentum ($p_{\rm T}$) in high multiplicity pp and p-Pb collisions. Hard scatterings are selected on an event-by-event basis with jets reconstructed with the anti-$k_{\rm T}$ algorithm using charged particles. The production of strange particles associated with jets $p_{\rm T,\;jet}^{\rm ch}>10$ and $p_{\rm T,\;jet}^{\rm ch}>20$ GeV/$c$ in p-Pb collisions, and with jet $p_{\rm T,\;jet}^{\rm ch}>10$ GeV/$c$ in pp collisions is reported as a function of $p_{\rm T}$. Its dependence on angular distance from the jet axis, $R({\rm V}^{0},\;{\rm jet})$, for jets with $p_{\rm T,\;jet}^{\rm ch}>10$ GeV/$c$ in p-Pb collisions is reported as well. The $p_{\rm T}$-differential production spectra of strange particles associated with jets are found to be harder compared to that in the underlying event and both differ from the inclusive measurements. In events containing a jet, the density of the ${\rm V}^{0}$ particles in the underlying event is found to be larger than the density in the minimum bias events. The $\Lambda/{\rm K}^{0}_{\rm S}$ ratio associated with jets in p-Pb collisions is consistent with the ratio in pp collisions and follows the expectation of jets fragmenting in vacuum. On the other hand, this ratio within jets is consistently lower than the one obtained in the underlying event and it does not show the characteristic enhancement of baryons at intermediate $p_{\rm T}$ often referred to as "baryon anomaly" in the inclusive measurements.

11 data tables

$p_{\rm T}$-differential density of inclusive ${\rm V}^{0}$ particles in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV.

$p_{\rm T}$-differential density of ${\rm V}^{0}$ particles in underlying events (perp. cone) in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV.

$p_{\rm T}$-differential densities of ${\rm V}^{0}$ particles selected with $R({\rm V}^{0},{\rm jet}) < 0.4$ and that produced in jets in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.

More…

Inclusive, prompt and non-prompt ${\rm J}/\psi$ production at midrapidity in p$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 06 (2022) 011, 2022.
Inspire Record 1862791 DOI 10.17182/hepdata.130237

A measurement of inclusive, prompt, and non-prompt ${\rm J}/\psi$ production in p$-$Pb collisions at a nucleon$-$nucleon centre-of-mass energy $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV is presented. The inclusive ${\rm J}/\psi$ mesons are reconstructed in the dielectron decay channel at midrapidity down to a transverse momentum $p_{\rm T} = 0$. The inclusive ${\rm J}/\psi$ nuclear modification factor $R_{\rm pPb}$ is calculated by comparing the new results in p$-$Pb collisions to a recently measured proton$-$proton reference at the same centre-of-mass energy. Non-prompt ${\rm J}/\psi$ mesons, which originate from the decay of beauty hadrons, are separated from promptly produced ${\rm J}/\psi$ on a statistical basis for $p_{\rm T}$ larger than 1.0 GeV/$c$. These results are based on the data sample collected by the ALICE detector during the 2016 LHC p$-$Pb run, corresponding to an integrated luminosity ${\cal L}_{\rm int} = 292 \pm 11 \; {\rm \mu b}^{-1}$, which is six times larger than the previous publications. The total uncertainty on the $p_{\rm T}$-integrated inclusive ${\rm J}/\psi$ and non-prompt ${\rm J}/\psi$ cross section are reduced by a factor 1.7 and 2.2, respectively. The measured cross sections and $R_{\rm pPb}$ are compared with theoretical models that include various combinations of cold nuclear matter effects. From the non-prompt ${\rm J}/\psi$ production cross section, the ${\rm b\overline{b}}$ production cross section at midrapidity, $\mathrm{d}\sigma_{\rm b\overline{b}}/\mathrm{d}y$, and the total cross section extrapolated over full phase space, $\sigma_{\rm b\overline{b}}$, are derived.

12 data tables

Fraction of non-prompt $\rm{J}/\psi$ in pp collisions at $\sqrt{s}$ = 5.02 TeV for different $p_\mathrm{T}$ ranges, as determined with a procedure of interpolation from measurments at other energies. It is not a direct measurment.

Inclusive d$^2\sigma$/d$y$d$p_{\rm T}$ in bins of $p_{\mathrm{T}}^{J/\psi}$ for prompt J/$\psi$ in p--Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.

Fraction of non-prompt J/$\psi$ in p--Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV for different $p_\mathrm{T}$ ranges.

More…

The Asymmetry of Antimatter in the Proton

The SeaQuest collaboration Dove, J. ; Kerns, B. ; McClellan, R.E. ; et al.
Nature 604 (2022) E26, 2022.
Inspire Record 1849683 DOI 10.17182/hepdata.167351

The fundamental building blocks of the proton, quarks and gluons, have been known for decades. However, we still have an incomplete theoretical and experimental understanding of how these particles and their dynamics give rise to the quantum bound state of the proton and its physical properties, such as for example its spin. The two up and the single down quarks that comprise the proton in the simplest picture account only for a few percent of the proton mass, the bulk of which is in the form of quark kinetic and potential energy and gluon energy from the strong force. An essential feature of this force, as described by quantum chromodynamics, is its ability to create matter-antimatter quark pairs inside the proton that exist only for a very short time. Their fleeting existence makes the antimatter quarks within protons difficult to study, but their existence is discernible in reactions where a matter-antimatter quark pair annihilates. In this picture of quark-antiquark creation by the strong force, the probability distributions as a function of momentum for the presence of up and down antimatter quarks should be nearly identical, since their masses are quite similar and small compared to the mass of the proton. In the present manuscript, we show evidence from muon pair production measurements that these distributions are significantly different, with more abundant down antimatter quarks than up antimatter quarks over a wide range of momentum. These results revive interest in several proposed mechanisms as the origin of this antimatter asymmetry in the proton that had been disfavored by the previous results and point to the future measurements that can distinguish between these mechanisms.

5 data tables

Cross section ratios $\sigma_{D}/2\sigma_{H}$ binned in $x_t$ with their statistical and systematic uncertainties and the average values for the kinematic variables of each $x_t$ bin. The cross section ratios are defined as the ratio of luminosity-corrected yields from the hydrogen and deuterium targets. The final column is the experimental resolution in $x_t$ as determined by Monte Carlo simulations.

Ratios of $\bar{d}(x)$ to $\bar{u}(x)$ with their upper and lower statistical and systematic uncertainties. The analysis was based on the present cross section ratio data, and next-to-leading order calculations of the Drell-Yan cross sections using CT18 parton distributions for all except the ratio of $\bar{d}(x)$ to $\bar{u}(x)$. The systematic uncertainty is fully correlated among all $x$ bins. The systematic uncertainty does not include a contribution from the choice of the base (CT18) pdf, which is small if added in quadrature to the other systematic uncertainties.

Ratios of $\mathbf{\sigma_D}$ to $\mathbf{2\sigma_H}$ as a function of $\mathbf{P_T}$. Ratios of $\sigma_D$ to $2\sigma_H$ with their statistical and systematic uncertainties as a function of transverse momentum, $P_T$. The cross section ratios are defined as the ratio of luminosity-corrected yields from the hydrogen and deuterium targets. The final column, $\delta P_T$ is the experimental resolution in $P_T$ as determined by Monte Carlo simulation.

More…

Production of pions, kaons, (anti-)protons and $\phi$ mesons in Xe-Xe collisions at $\sqrt{s_{\rm NN}} = 5.44$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 81 (2021) 584, 2021.
Inspire Record 1840099 DOI 10.17182/hepdata.110161

The first measurement of the production of pions, kaons, (anti-)protons and $\phi$ mesons at midrapidity in Xe-Xe collisions at $\sqrt{s_{\rm NN}} = 5.44$ TeV is presented. Transverse momentum ($p_{\rm T}$) spectra and $p_{\rm T}$-integrated yields are extracted in several centrality intervals bridging from p-Pb to mid-central Pb-Pb collisions in terms of final-state multiplicity. The study of Xe-Xe and Pb-Pb collisions allows systems at similar charged-particle multiplicities but with different initial geometrical eccentricities to be investigated. A detailed comparison of the spectral shapes in the two systems reveals an opposite behaviour for radial and elliptic flow. In particular, this study shows that the radial flow does not depend on the colliding system when compared at similar charged-particle multiplicity. In terms of hadron chemistry, the previously observed smooth evolution of particle ratios with multiplicity from small to large collision systems is also found to hold in Xe-Xe. In addition, our results confirm that two remarkable features of particle production at LHC energies are also valid in the collision of medium-sized nuclei: the lower proton-to-pion ratio with respect to the thermal model expectations and the increase of the $\phi$-to-pion ratio with increasing final-state multiplicity.

58 data tables

$p_{T}$-distributions of pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 0-5%.

$p_{T}$-distributions of kaons ($K^{+}+K^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 0-5%.

$p_{T}$-distributions of protons ($p+pbar$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 0-5%.

More…

Measurement of $\Lambda$(1520) production in pp collisions at $\sqrt{s}$ = 7 TeV and p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adhya, S.P. ; et al.
Eur.Phys.J.C 80 (2020) 160, 2020.
Inspire Record 1752831 DOI 10.17182/hepdata.115139

The production of the $\Lambda$(1520) baryonic resonance has been measured at midrapidity in inelastic pp collisions at $\sqrt{s}$ = 7 TeV and in p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV for non-single diffractive events and in multiplicity classes. The resonance is reconstructed through its hadronic decay channel $\Lambda$(1520) $\rightarrow$ pK$^{-}$ and the charge conjugate with the ALICE detector. The integrated yields and mean transverse momenta are calculated from the measured transverse momentum distributions in pp and p-Pb collisions. The mean transverse momenta follow mass ordering as previously observed for other hyperons in the same collision systems. A Blast-Wave function constrained by other light hadrons ($\pi$, K, K$_{\rm{S}}^0$, p, $\Lambda$) describes the shape of the $\Lambda$(1520) transverse momentum distribution up to 3.5 GeV/$c$ in p-Pb collisions. In the framework of this model, this observation suggests that the $\Lambda(1520)$ resonance participates in the same collective radial flow as other light hadrons. The ratio of the yield of $\Lambda(1520)$ to the yield of the ground state particle $\Lambda$ remains constant as a function of charged-particle multiplicity, suggesting that there is no net effect of the hadronic phase in p-Pb collisions on the $\Lambda$(1520) yield.

12 data tables

$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) at midrapidity in inelastic pp collisions at $\sqrt{s}$ $\mathrm{=}$ 7 TeV.

$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) in NSD p--Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ $\mathrm{=}$ 5.02 TeV. The uncertainty 'sys,$p_{\rm T}$-correlated' indicates the systematic uncertainty after removing the contributions of $p_{\rm T}$-uncorrelated uncertainty.

$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) in p--Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ $\mathrm{=}$ 5.02 TeV in multiplicity interval 0--20\%. The uncertainty 'sys,$p_{\rm T}$-correlated' indicates the systematic uncertainty after removing the contributions of $p_{\rm T}$-uncorrelated uncertainty.

More…

Measurement of the ratio of cross sections for inclusive isolated-photon production in $pp$ collisions at $\sqrt s = 13$ and $8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 04 (2019) 093, 2019.
Inspire Record 1717495 DOI 10.17182/hepdata.89370

The ratio of the cross sections for inclusive isolated-photon production in $pp$ collisions at centre-of-mass energies of 13 and 8 TeV is measured using the ATLAS detector at the LHC. The integrated luminosities of the 13 TeV and 8 TeV datasets are 3.2 fb$^{-1}$ and 20.2 fb$^{-1}$, respectively. The ratio is measured as a function of the photon transverse energy in different regions of the photon pseudorapidity. The predictions from next-to-leading-order perturbative QCD calculations are compared with the measured ratio. The experimental systematic uncertainties as well as the uncertainties affecting the predictions are evaluated taking into account the correlations between the two centre-of-mass energies, resulting in a reduction of up to a factor of $2.5$ ($5$) in the experimental (theoretical) systematic uncertainties. The predictions based on several parameterisations of the proton parton distribution functions agree with the data within the reduced experimental and theoretical uncertainties. In addition, this ratio to that of the fiducial cross sections for $Z$ boson production at 13 and 8 TeV using the decay channels $Z \rightarrow e^+e^-$ and $Z \rightarrow \mu^+\mu^-$ is made and compared with the theoretical predictions. In this double ratio, a further reduction of the experimental uncertainty is obtained because the uncertainties arising from the luminosity measurement cancel out. The predictions describe the measurements of the double ratio within the theoretical and experimental uncertainties.

16 data tables

Measured ratio of cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $|\eta^{\gamma}|<0.6$.

Predicted ratio of cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $|\eta^{\gamma}|<0.6$.

Measured ratio of cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $0.6<|\eta^{\gamma}|<1.37$.

More…