This paper analyzes π−N→π−π−π+N events from Fermilab experiment E-580, using 200-GeV/c particles on a segmented target of plastic scintillator. Starting with 48 657 triggers, data-quality cuts and a cut on missing mass squared of M2<16 GeV2 lead to a final sample of 7205 events. The xF distribution of the 3π system shows almost all events in a sharp peak at xF=1, suggesting the presence of beam diffraction into three pions. The overall t’ distribution is fit to the sum of three exponential terms corresponding to coherent diffraction from carbon nuclei, diffraction from individual nucleons, and background. Cross sections per nucleon and exponential slopes are reported for each of the three components as a function of 3π effective mass. The cross section for diffraction from the nucleons in the target is 0.34±0.04 mb/nucleon. The cross section for coherent diffraction from carbon is 1.08±0.12 mb/nucleus. The exponential slope for diffraction is observed to decrease with increasing 3π effective mass. The fraction of coherent carbon diffraction in the total cross section is observed to decrease with increasing 3π effective mass. In the π−π+ effective-mass spectrum the ρ0(770) and f0(1270) are observed and their cross sections per nucleon are calculated. In the π−π−π+ effective-mass spectrum the A1−/A2− and A3− enhancements are observed and a cross section for the A3− is calculated.
No description provided.
Diffraction from coherent carbon nucleus.
Diffraction from individual nucleon.
The first double diffractive cross-section measurement in the very forward region has been carried out by the TOTEM experiment at the LHC with center-of-mass energy of sqrt(s)=7 TeV. By utilizing the very forward TOTEM tracking detectors T1 and T2, which extend up to |eta|=6.5, a clean sample of double diffractive pp events was extracted. From these events, we measured the cross-section sigma_DD =(116 +- 25) mub for events where both diffractive systems have 4.7 <|eta|_min < 6.5 .
Visible double diffractive cross-section measurements in the forward region. See paper for details of the nomenclature.
True eta_min corrected double diffractive cross-section measurements in the forward region. See paper for details of the nomenclature.
Differential cross sections of p p forward elastic scattering were measured between 400 and 730 MeV/ c , and the real-to-imaginary ratio, ϱ, of the forward amplitude was deduced. We found that ρ increases from ∼ 0.1 to ∼ 0.4 in this momentum range. A dispersion-relation analysis shows the existence of a pole-like structure in the real part of the p p amplitude near threshold.
REAL/IMAG RATIO OF FORWARD AMPLITUDE DETERMINED FROM FIT TO COULOMB-NUCLEARINTERFERENCE.
The differential cross-sections for the elastic scattering of protons on deuterium have been measured at 600 MeV in the |t| range between 0.003 and 0.030 (GeV/c)2. The results are analysed by using the Bethe and Glauber formalisms taking into account spin effects in deuterium wave function and nucleon-nucleon amplitudes. The ratio between the real and the imaginary parts of the spin-independent protonneutron amplitude αpn deduced from dispersion calculations and phase shift analysis is compared with experimental results.
No description provided.
This paper presents the first analysis of diffractive photon dissociation events in deep inelastic positron-proton scattering at HERA in which the proton in the final state is detected and its momentum measured. The events are selected by requiring a scattered proton in the ZEUS leading proton spectrometer (LPS) with $\xl>0.97$, where $\xl$ is the fraction of the incoming proton beam momentum carried by the scattered proton. The use of the LPS significantly reduces the contamination from events with diffractive dissociation of the proton into low mass states and allows a direct measurement of $t$, the square of the four-momentum exchanged at the proton vertex. The dependence of the cross section on $t$ is measured in the interval $0.073<|t|<0.4$~$\gevtwo$ and is found to be described by an exponential shape with the slope parameter $b=\tslopeerr$. The diffractive structure function $\ftwodfour$ is presented as a function of $\xpom \simeq 1-\xl$ and $\beta$, the momentum fraction of the struck quark with respect to $\xpom$, and averaged over the $t$ interval $0.073<|t|<\ftwodfourtmax$~$\gevtwo$ and the photon virtuality range $5
The measured distribution of T, the squared momentum transfer to the virtual pluton.
Slope of the T distribution.
The structure function F2(NAME=D4).
The DIS diffractive cross section, $d\sigma^{diff}_{\gamma^* p \to XN}/dM_X$, has been measured in the mass range $M_X < 15$ GeV for $\gamma^*p$ c.m. energies $60 < W < 200$ GeV and photon virtualities $Q^2 = 7$ to 140 GeV$^2$. For fixed $Q^2$ and $M_X$, the diffractive cross section rises rapidly with $W$, $d\sigma^{diff}_{\gamma^*p \to XN}(M_X,W,Q^2)/dM_X \propto W^{a^{diff}}$ with $a^{diff} = 0.507 \pm 0.034 (stat)^{+0.155}_{-0.046}(syst)$ corresponding to a $t$-averaged pomeron trajectory of $\bar{\alphapom} = 1.127 \pm 0.009 (stat)^{+0.039}_{-0.012} (syst)$ which is larger than $\bar{\alphapom}$ observed in hadron-hadron scattering. The $W$ dependence of the diffractive cross section is found to be the same as that of the total cross section for scattering of virtual photons on protons. The data are consistent with the assumption that the diffractive structure function $F^{D(3)}_2$ factorizes according to $\xpom F^{D(3)}_2 (\xpom,\beta,Q^2) = (x_0/ \xpom)^n F^{D(2)}_2(\beta,Q^2)$. They are also consistent with QCD based models which incorporate factorization breaking. The rise of $\xpom F^{D(3)}_2$ with decreasing $\xpom$ and the weak dependence of $F^{D(2)}_2$ on $Q^2$ suggest a substantial contribution from partonic interactions.
Cross section for diffractive scattering.
Cross section for diffractive scattering.
Cross section for diffracitve scattering.
Parity nonconservation in proton-proton scattering has been studied by measuring the angle-integrated longitudinal analyzing power A z . We found A z (13.6 MeV)=(−1.5±0.5)×10 −7 . The error includes uncertainties due to statistics and corrections, as well as upper limits on systematic effects. The experimental result is discussed with respect to recent theoretical calculations.
No description provided.
We have measured the analyzing power A y in n-d elastic scattering at 67.0 MeV. The experiment was based on the detection of recoil deuterons, allowing for a precise measurement of the backward angular range. The results are in good agreement with recent three-nucleon calculations which are based on the Paris and Bonn NN potentials.
No description provided.
The polarization parameter in pn elastic scattering has been measured at 24 GeV/ c over the range of four-momentum transfer squared 0.1 < | t | < 1.25 (GeV/ c ) 2 , and found to be negative except for a zero at | t | = 0.65 (GeV/ c ) 2 .
No description provided.
The analysing powers in free →n p forward elastic scattering have been measured for incident neutron energies of 633, 784, 834, 934 and 985 MeV, and for momentum transfer 0.01 < ‖ t ‖ < 0.10 ( GeV / c ) 2 . The experiment used a recoil detector ionisation chamber which served at the same time as a gas target, and scintillation counters to measure the asymmetry of the scattered neutrons.
No description provided.
No description provided.
No description provided.