Date

Search for decays of the Higgs boson into a pair of pseudoscalar particles decaying into $b\bar{b}\tau^+\tau^-$ using $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.D 110 (2024) 052013, 2024.
Inspire Record 2803767 DOI 10.17182/hepdata.152754

This paper presents a search for exotic decays of the Higgs boson into a pair of new pseudoscalar particles, $H\rightarrow aa$, where one pseudoscalar decays into a $b$-quark pair and the other decays into a $\tau$-lepton pair, in the mass range $12\leq m_{a}\leq 60$ GeV. The analysis uses $pp$ collision data at $\sqrt{s} = 13$ TeV collected with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 140 ${fb}^{-1}$. No significant excess above the Standard Model (SM) prediction is observed. Assuming the SM Higgs boson production cross-section, the search sets upper limits at 95% confidence level on the branching ratio of Higgs bosons decaying into $b\bar{b}\tau^+\tau^-$, $\mathcal{B}(H \rightarrow aa \rightarrow b\bar{b}\tau^+\tau^-)$, between 2.2% and 3.9% depending on the pseudoscalar mass.

14 data tables

Visible mass $m^{\mathrm{vis}}(\mu\tau_{\mathrm{had}})$ and distribution for signal and the expected background. In order to compare the shapes, the expected signal distribution is shown assuming ten times the production cross section of the Higgs boson and a 100% branching ratio to $b\bar{b}\tau^+\tau^-$. Overflow events are included in the last bins.

Sum of the transverse mass $\Sigma m_T$ distributions for signal and the expected background. Events with high $m^{\mathrm{vis}}(\mu\tau_{\mathrm{had}})$ and high $\Sigma m_T$ are included in the $t\bar{t}$ region. In order to compare the shapes, the expected signal distribution is shown assuming ten times the production cross section of the Higgs boson and a 100% branching ratio to $b\bar{b}\tau^+\tau^-$. Overflow events are included in the last bins.

The pNN input variable visible mass $m^{\mathrm{vis}}(\mu\tau_{\mathrm{had}})$ is shown in the SR with no cut on the pNN discriminant. The signal shape is normalized to the same integral as the total background prediction. Overflow events are included in the last bins.

More…

Measurement of the inclusive isolated-photon production cross section in pp collisions at $\sqrt{s}$ = 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Agarwal, Apar ; et al.
Eur.Phys.J.C 85 (2025) 98, 2025.
Inspire Record 2803487 DOI 10.17182/hepdata.155181

The production cross section of inclusive isolated photons has been measured by the ALICE experiment at the CERN LHC in pp collisions at centre-of-momentum energy of $\sqrt{s}=13$ TeV collected during the LHC Run 2 data-taking period. The measurement is performed by combining the measurements of the electromagnetic calorimeter EMCal and the central tracking detectors ITS and TPC, covering a pseudorapidity range of $|\eta^{\gamma}|<0.67$ and a transverse momentum range of $7<p_{\rm T}^{\gamma}<200$ GeV/$c$. The result extends to lower $p_{\rm T}^{\gamma}$ and $x_{\rm T}^{\gamma} = 2p_{\rm T}^{\gamma}/\sqrt{s}$ ranges, the lowest $x_{\rm T}^{\gamma}$ of any isolated photon measurements to date, extending significantly those measured by the ATLAS and CMS experiments towards lower $p_{\rm T}^{\gamma}$ at the same collision energy with a small overlap between the measurements. The measurement is compared with next-to-leading order perturbative QCD calculations and the results from the ATLAS and CMS experiments as well as with measurements at other collision energies. The measurement and theory prediction are in agreement with each other within the experimental and theoretical uncertainties.

5 data tables

Differential cross section of isolated photons measured in pp collisions at 13 TeV.

pQCD NLO calculations with JETPHOX of the isolated-photon cross section as a function of $p_\mathrm{T}^{\gamma}$. The calculations were obtained by choosing factorisation, normalisation, and fragmentation scales equal to the photon transverse momentum ($\mu_{f}=\mu_{R}=\mu_{F}=p_\mathrm{T}^{\gamma}$). The parton distribution function used in the calculations is NNPDF4.0, and the fragmentation function is BFG II.

Ratio of isolated-photon cross sections measured in pp collisions at $\sqrt{s}=$13 TeV over the previous ALICE measurement at $\sqrt{s}=$7 TeV.

More…

Measurement of directed flow in <math><mrow><mi>Au</mi><mo>+</mo><mi>Au</mi></mrow></math> collisions at <math><mrow><msqrt><msub><mi>s</mi><mrow><mi>N</mi><mi>N</mi></mrow></msub></msqrt><mo>=</mo><mn>19.6</mn></mrow></math> and 27 GeV with the STAR event plane detector

The STAR collaboration Abdulhamid, M.I. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.C 111 (2025) 014906, 2025.
Inspire Record 2808515 DOI 10.17182/hepdata.153808

In heavy-ion collision experiments, the global collectivity of final-state particles can be quantified by anisotropic flow coefficients <math><mo>(</mo><msub><mi>v</mi><mi>n</mi></msub><mo>)</mo></math>. The first-order flow coefficient, also referred to as the directed flow <math><mo>(</mo><msub><mi>v</mi><mn>1</mn></msub><mo>)</mo></math>, describes the collective sideward motion of produced particles and nuclear fragments in heavy-ion collisions. It carries information on the very early stage of the collision, especially at large pseudorapidity <math><mo>(</mo><mi>η</mi><mo>)</mo></math>, where it is believed to be generated during the nuclear passage time. Directed flow therefore probes the onset of bulk collective dynamics during thermalization, providing valuable experimental guidance to models of the pre-equilibrium stage. In 2018, the Event Plane Detector (EPD) was installed in STAR and used for the Beam Energy Scan phase-II (BES-II) data taking. The combination of EPD <math><mrow><mo>(</mo><mn>2.1</mn><mo>&lt;</mo><mo>|</mo><mi>η</mi><mo>|</mo><mo>&lt;</mo><mn>5.1</mn><mo>)</mo></mrow></math> and high-statistics BES-II data enables us to extend the <math><msub><mi>v</mi><mn>1</mn></msub></math> measurement to the forward and backward <math><mi>η</mi></math> regions. In this paper, we present the measurement of <math><msub><mi>v</mi><mn>1</mn></msub></math> over a wide <math><mi>η</mi></math> range in <math><mrow><mi>Au</mi><mo>+</mo><mi>Au</mi></mrow></math> collisions at <math><mrow><msqrt><msub><mi>s</mi><mrow><mi>N</mi><mi>N</mi></mrow></msub></msqrt><mo>=</mo></mrow></math> 19.6 and 27 GeV using the STAR EPD. The results of the analysis at <math><mrow><msqrt><msub><mi>s</mi><mrow><mi>N</mi><mi>N</mi></mrow></msub></msqrt><mo>=</mo></mrow></math> 19.6 GeV exhibit excellent consistency with the previous PHOBOS measurement, while elevating the precision of the overall measurement. The increased precision of the measurement also revealed finer structures in heavy-ion collisions, including a potential observation of the first-order event-plane decorrelation. Multiple physics models were compared to the experimental results. Only a transport model and a three-fluid hybrid model can reproduce a sizable <math><msub><mi>v</mi><mn>1</mn></msub></math> at large <math><mi>η</mi></math> as was observed experimentally. The model comparison also indicates <math><msub><mi>v</mi><mn>1</mn></msub></math> at large <math><mi>η</mi></math> might be sensitive to the QGP phase transition.

32 data tables

Directed flow vs pseudorapidity.

Directed flow vs pseudorapidity.

Directed flow vs pseudorapidity.

More…

Version 2
Measurement of Spin-Density Matrix Elements in $\Delta^{++}(1232)$ photoproduction

The GlueX collaboration Afzal, F. ; Akondi, C.S. ; Albrecht, M. ; et al.
Phys.Lett.B 863 (2025) 139368, 2025.
Inspire Record 2799639 DOI 10.17182/hepdata.153414

We measure the spin-density matrix elements (SDMEs) of the $\Delta^{++}(1232)$ in the photoproduction reaction $\gamma p \to \pi^-\Delta^{++}(1232)$ with the GlueX experiment in Hall D at Jefferson Lab. The measurement uses a linearly--polarized photon beam with energies from $8.2$ to $8.8$~GeV and the statistical precision of the SDMEs exceeds the previous measurement by three orders of magnitude for the momentum transfer squared region below $1.4$ GeV$^2$. The data are sensitive to the previously undetermined relative sign between couplings in existing Regge-exchange models. Linear combinations of the extracted SDMEs allow for a decomposition into natural and unnatural--exchange amplitudes. We find that the unnatural exchange plays an important role in the low momentum transfer region.

2 data tables

Spin-density matrix elements for the photoproduction of $\Delta(1232)^{++}$ in the Gottfried-Jackson system. The first uncertainty is statistical, the second systematic. The systematic uncertainties for the polarized SDMEs $\rho^1_{ij}$ and $\rho^2_{ij}$ contain an overall relative normalization uncertainty of 2.1% which is fully correlated for all values of $-t$.

Spin-density matrix elements for the photoproduction of $\Delta(1232)^{++}$ in the Gottfried-Jackson system. The first uncertainty is statistical, the second systematic.


Combination of searches for Higgs boson pair production in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.Lett. 133 (2024) 101801, 2024.
Inspire Record 2798812 DOI 10.17182/hepdata.153612

This Letter presents results from a combination of searches for Higgs boson pair production using 126$-$140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV recorded with the ATLAS detector. At 95% confidence level (CL), the upper limit on the production rate is 2.9 times the standard model (SM) prediction, with an expected limit of 2.4 assuming no Higgs boson pair production. Constraints on the Higgs boson self-coupling modifier $\kappa_{\lambda}=\lambda_{HHH}/\lambda_{HHH}^\mathrm{SM}$, and the quartic $HHVV$ coupling modifier $\kappa_{2V}=g_{HHVV}/g_{HHVV}^\mathrm{SM}$, are derived individually, fixing the other parameter to its SM value. The observed 95% CL intervals are $-1.2 < \kappa_{\lambda} < 7.2$ and $0.6 < \kappa_{2V} < 1.5$, respectively, while the expected intervals are $-1.6 < \kappa_{\lambda} < 7.2$ and $0.4 < \kappa_{2V} < 1.6$ in the SM case. Constraints obtained for several interaction parameters within Higgs effective field theory are the strongest to date, offering insights into potential deviations from SM predictions.

47 data tables

Observed and expected 95&percnt; CL upper limits on the signal strength for inclusive ggF HH and VBF HH production from the bb&#772;&tau;<sup>+</sup>&tau;<sup>-</sup>, bb&#772;&gamma;&gamma;, bb&#772;bb&#772;, multilepton and bb&#772;&#8467;&#8467;+E<sub>T</sub><sup>miss</sup> decay channels, and their statistical combination. The predicted SM cross-section assumes m<sub>H</sub> = 125&nbsp;GeV. The expected limit, along with its associated &plusmn;1&sigma; and &plusmn;2&sigma; bands, is calculated for the assumption of no HH production and with all NPs profiled to the observed data.

Expected value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for $b\bar{b}b\bar{b}$.

Expected value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for $b\bar{b}\tau\tau$.

More…

Probing the Scalar WIMP-Pion Coupling with the first LUX-ZEPLIN data

The LZ collaboration Aalbers, J. ; Akerib, D.S. ; Al Musalhi, A.K. ; et al.
Commun.Phys. 7 (2024) 292, 2024.
Inspire Record 2794384 DOI 10.17182/hepdata.152755

Weakly interacting massive particles (WIMPs) may interact with a virtual pion that is exchanged between nucleons. This interaction channel is important to consider in models where the spin-independent isoscalar channel is suppressed. Using data from the first science run of the LUX-ZEPLIN dark matter experiment, containing 60 live days of data in a 5.5~tonne fiducial mass of liquid xenon, we report the results on a search for WIMP-pion interactions. We observe no significant excess and set an upper limit of $1.5\times10^{-46}$~cm$^2$ at a 90% confidence level for a WIMP mass of 33~GeV/c$^2$ for this interaction.

1 data table

WIMP-Pion interaction cross section at the 90% CL


The azimuthal correlation between the leading jet and the scattered lepton in deep inelastic scattering at HERA

The ZEUS collaboration Abt, I. ; Aggarwal, R. ; Aushev, V. ; et al.
Eur.Phys.J.C 84 (2024) 1334, 2024.
Inspire Record 2794054 DOI 10.17182/hepdata.153487

The azimuthal correlation angle, $\Delta\phi$, between the scattered lepton and the leading jet in deep inelastic $e^{\pm}p$ scattering at HERA has been studied using data collected with the ZEUS detector at a centre-of-mass energy of $\sqrt{s} = 318 \;\mathrm{GeV}$, corresponding to an integrated luminosity of $326 \;\mathrm{pb}^{-1}$. A measurement of jet cross sections in the laboratory frame was made in a fiducial region corresponding to photon virtuality $10 \;\mathrm{GeV}^2 < Q^2 < 350 \;\mathrm{GeV}^2$, inelasticity $0.04 < y < 0.7$, outgoing lepton energy $E_e > 10 \;\mathrm{GeV}$, lepton polar angle $140^\circ < \theta_e < 180^\circ$, jet transverse momentum $2.5 \;\mathrm{GeV} < p_\mathrm{T,jet} < 30 \;\mathrm{GeV}$, and jet pseudorapidity $-1.5 < \eta_\mathrm{jet} < 1.8$. Jets were reconstructed using the $k_\mathrm{T}$ algorithm with the radius parameter $R = 1$. The leading jet in an event is defined as the jet that carries the highest $p_\mathrm{T,jet}$. Differential cross sections, $d\sigma/d\Delta\phi$, were measured as a function of the azimuthal correlation angle in various ranges of leading-jet transverse momentum, photon virtuality and jet multiplicity. Perturbative calculations at $\mathcal{O}(\alpha_{s}^2)$ accuracy successfully describe the data within the fiducial region, although a lower level of agreement is observed near $\Delta\phi \rightarrow \pi$ for events with high jet multiplicity, due to limitations of the perturbative approach in describing soft phenomena in QCD. The data are equally well described by Monte Carlo predictions that supplement leading-order matrix elements with parton showering.

45 data tables

<b>Note: in the paper, uncertainties are given in relative terms. The HEPData table contains absolute numbers. The original data file, containing relative uncertainties as in the paper, is available via the 'Resources' button above.</b> Inclusive measurement of the differential cross sections, $d\sigma/d\Delta\phi$, as obtained from the data, ARIADNE MC simulations, and perturbative calculations at $\mathcal{O}(\alpha_{s})$ and $\mathcal{O}(\alpha_{s}^{2})$ accuracy. The effect of initial- and final-state radiation has been corrected in data, based on a simulation study performed in the RAPGAP framework. The quantities $\delta_\mathrm{stat}$ and $\delta_\mathrm{syst}$ represent the statistical and systematic uncertainties relative to the central value, respectively. The uncertainty in the luminosity measurement ($1.9\%$) is not included in these values. The quantities $\delta(\mathcal{O}(\alpha_{s}^{k}))$ represent the combined uncertainty of the scale dependence in the calculation and the model dependence in the hadronisation correction in the $\mathcal{O}(\alpha_{s}^{k})$ calculations.

<b>Note: in the paper, uncertainties are given in relative terms. The HEPData table contains absolute numbers. The original data file, containing relative uncertainties as in the paper, is available via the 'Resources' button above.</b> Differential cross sections, $d\sigma/d\Delta\phi$, in the $p_{T,jet}^{lead}$ region of $2.5 \;\mathrm{GeV} < p_{T,jet}^{lead} < 7 \;\mathrm{GeV}$ for $N_{jet} \geq 1$, as obtained from the data, ARIADNE MC simulations, and perturbative calculations at $\mathcal{O}(\alpha_{s})$ and $\mathcal{O}(\alpha_{s}^{2})$ accuracy. Other details are as in the caption to Table 1.

<b>Note: in the paper, uncertainties are given in relative terms. The HEPData table contains absolute numbers. The original data file, containing relative uncertainties as in the paper, is available via the 'Resources' button above.</b> Differential cross sections, $d\sigma/d\Delta\phi$, in the $p_{T,jet}^{lead}$ region of $2.5 \;\mathrm{GeV} < p_{T,jet}^{lead} < 7 \;\mathrm{GeV}$ for $N_{jet} \geq 2$, as obtained from the data, ARIADNE MC simulations, and perturbative calculations at $\mathcal{O}(\alpha_{s})$ and $\mathcal{O}(\alpha_{s}^{2})$ accuracy. Other details are as in the caption to Table 1.

More…

Measurements of jet cross-section ratios in 13 TeV proton--proton collisions with ATLAS

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.D 110 (2024) 072019, 2024.
Inspire Record 2791854 DOI 10.17182/hepdata.105630

Measurements of jet cross-section ratios between inclusive bins of jet multiplicity are performed in 140 fb$^{-1}$ of proton--proton collisions with $\sqrt{s}=13$ TeV center-of-mass energy, recorded with the ATLAS detector at CERN's Large Hadron Collider. Observables that are sensitive the energy-scale and angular distribution of radiation due to the strong interaction in the final state are measured double-differentially, in bins of jet multiplicity, and are unfolded to account for acceptance and detector-related effects. Additionally, the scalar sum of the two leading jets' transverse momenta is measured triple-differentially, in bins of the third jet's transverse momentum as well as bins of jet multiplicity. The measured distributions are used to construct ratios of the inclusive jet-multiplicity bins, which have been shown to be sensitive to the strong coupling $\alpha_{\textrm S}$ while being less sensitive than other observables to systematic uncertainties and parton distribution functions. The measured distributions are compared with state-of-the-art QCD calculations, including next-to-next-to-leading-order predictions. Studies leading to reduced jet energy scale uncertainties significantly improve the precision of this work, and are documented herein.

77 data tables

R32 for $H_{T2}$, 60 GeV < $p_{T,3}$

R32 for $H_{T2}$, 0.05 x $H_{T2} < $p_{T,3}$

R32 for $H_{T2}$, 0.1 x $H_{T2} < $p_{T,3}$

More…

Search for non-resonant Higgs boson pair production in final states with leptons, taus, and photons in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 08 (2024) 164, 2024.
Inspire Record 2791857 DOI 10.17182/hepdata.152622

A search is presented for non-resonant Higgs boson pair production, targeting the $bbZZ$, 4$V$ ($V$ = $W$ or $Z$), $VV\tau\tau$, 4$\tau$, $\gamma\gamma VV$ and $\gamma\gamma\tau\tau$ decay channels. Events are categorised based on the multiplicity of light charged leptons (electrons or muons), hadronically decaying tau leptons, and photons. The search is based on a data sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 140 fb$^{-1}$. No evidence of the signal is found and the observed (expected) upper limit on the cross-section for non-resonant Higgs boson pair production is determined to be 17 (11) times the Standard Model predicted cross-section at 95% confidence level under the background-only hypothesis. The observed (expected) constraints on the $HHH$ coupling modifier, $\kappa_{\lambda}$, are determined to be $-6.2 < \kappa_{\lambda} < 11.6$ ($-4.5 < \kappa_{\lambda} < 9.6$) at 95% confidence level, assuming the Standard Model for the expected limits and that new physics would only affect $\kappa_{\lambda}$.

28 data tables

Number of ggF and VBF SM HH signal events satisfying the preselection requirements from the targeted HH decay modes and their acceptance into the different ML search channels.

Number of ggF and VBF SM HH signal events satisfying the preselection requirements from the targeted HH decay modes and their acceptance into the different $\gamma\gamma$+ML search channels.

Distribution of the BDT output score in the 4l+2b channel signal region.

More…

A simultaneous unbinned differential cross section measurement of twenty-four $Z$+jets kinematic observables with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.Lett. 133 (2024) 261803, 2024.
Inspire Record 2791852 DOI 10.17182/hepdata.153189

$Z$ boson events at the Large Hadron Collider can be selected with high purity and are sensitive to a diverse range of QCD phenomena. As a result, these events are often used to probe the nature of the strong force, improve Monte Carlo event generators, and search for deviations from Standard Model predictions. All previous measurements of $Z$ boson production characterize the event properties using a small number of observables and present the results as differential cross sections in predetermined bins. In this analysis, a machine learning method called OmniFold is used to produce a simultaneous measurement of twenty-four $Z$+jets observables using $139$ fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV collected with the ATLAS detector. Unlike any previous fiducial differential cross-section measurement, this result is presented unbinned as a dataset of particle-level events, allowing for flexible re-use in a variety of contexts and for new observables to be constructed from the twenty-four measured observables.

26 data tables

Differential cross-section in bins of dimuon $p_\text{T}$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>

Differential cross-section in bins of dimuon rapidity. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>

Differential cross-section in bins of leading muon $p_\mathrm{T]$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>

More…