We investigate the four-photon final state produced in γγ colissions. In the π 0 π 0 channel we observe f(1270) production with predominantly helicity 2 and measure a partial width Γ γγ 2.9 +0.6 −0.4 ± keV (independent of assumptions on the helicity). We observe A 2 (1310) production in the π 0 η channel and find a partial width Γ γγ = 0.77 ± 0.18 ± 0.27 KeV (assuming helicity 2). We give an upper limit for f ≈ ηη .
New measurements of thee + e − → π + π − π + π − cross section have been performed by the magnetic detector DM1 at DCI (ORSAY) in the 1.4−2.18 GeV total energy range with statistics of 11000 events. Assuming the4 π ± production is dominated by the ϱ′(1.6) we determine its parameters: M = 1.57 ± 0.02 (stat.) −0.00 +0.06 (syst.) GeV,Γ = 0.51 ± 0.04 (stat.) −0.01 +0.04 (syst.)GeV,Γ ρ ′ee B ϱ′→ ρ 0 π + π − = 2.67 ± 0.19 (stat.) −0.36 +0.27 (syst.)keV.
The process e + e − → π 0 + anything has been measured at c.m. energies of 14 and 34 GeV for π 0 energies between 0.5 and 4 GeV. The ratio of π 0 to π ± production for π momenta between 0.5 and 1.5 GeV/ c is measured to be 2 σ ( π 0 )/ [ σ ( π + ) + σ ( π − )] = 1.3 ± 0.4 (1.2 ± 0.4) at 14 (34) GeV. The scaled cross section ( s / μ )d σ /d x when compared with lower energy (4.9–7.4 GeV) π 0 data indicates a substantial scaling violation.
None
We have performed a high statistics measurement of the production rate and the energy flow pattern of hadron events between √ s =33 and 36.7 GeV. The data show no evidence for the production of a new quark with charge 2 3 e . Planar events in e + e − →hadrons are shown to have three well separated jets. The production rate and the shape of three-jet events are compared with many models and we find that only the QCD model can explain the data.
The e + e − → 3 π + 3 π − cross section has been measured between 1400 and 2180 MeV with the magnetic detector DM1 at the Orsay storage rings DCI. The cross section increases continuously above 1600 MeV and reaches 2 nb at the maximum explored energy, much larger than VDM previous estimates.
The e + e − → ωπ + π − → π + π − π + π − π 0 cross section has been measured at DCI by the DMI experiment in the 1.4–2.2 GeV energy range. A bump in this cross section appears at 1.65 GeV above a small background, with 6.2 s.d. statistical significance. It can be interpreted as a new isoscalar vector meson: ω ′ or ø ′.
We report the first observation of an orbitally excited baryon, the Λ(1520), in quark and gluon fragmentation. The production rate is found to be (1.15±0.21±0.16)×10 −2 and (0.80±0.17 −0.13 +0.10 )×10 −2 Λ (1520) hyperons per event in direct ϒ decays and in the continuum, respectively. In contrast to the observed situation for ground state baryons, the production of the Λ(1520) in direct ϒ decays shows little or no enhancement with respect to continuum production.
The e + e − → ηπ + π − reaction has been measured in the center of mass energy interval 1350–2400 MeV by the magnetic detector DM2 at the Orsay storage ring DCI. Under the hypothesis of only one large resonance the cross section is not fit in a satisfactory way. The branching ratio τ − → η − π 0 ν τ =(0.13 ± 0.02)% is deduced via CVC from the above measurement.
Using the ARGUS detector at the DORIS II storage ring, we have observed the charmed baryons Σ c ++ and Σ c 0 , through their decays to Λ c + π ± . We have measured the mean Σ c −Λ c + mass difference as 167.6±0.3±1.6 MeV/ c 2 . The isospin mass splitting between the Σ c ++ and the Σ c 0 was found to be 1.2±0.7±0.3 MeV/ c 2 . The rate of Λ c + production from Σ c decays was found to be (36±12±11)% of the total rate of Λ c + production. The Σ c χ p spectrum was observed to be similar to that of the Λ c + , with a Peterson function parameter ϵ of 0.29±0.06.