Antineutrino interactions in BEBC are compared to look for differences between the differential cross sections per nucleon in neon and in deuterium. The identical geometries, beam spectra and muon identification criteria and acceptances allow comparison with very small systematic errors. The results are compared in detail with μ and e scattering data from EMC and SLAC. We find no rise in the ratio d σ/ d x ( ν Ne )/σ/ d x ( ν D 2 ) at low x , independent of Q 2 up to Q 2 ∼ 14 GeV 2 .
VALUES OF Q**2 IN THIS TABLE ARE :- 1.07,2.59,4.33,6.14,7.67,8.28,6.35 (FOR ALL Q**2) AND :-,7.9,9.5,11.5,13.2,13.9,11.6 (FOR Q**2 > 4.5 ).
In an inclusive experiment, isotopically resolved fragments, 3≤Z≤13, produced in high-energy proton-nucleus collisions have been studied using a low mass time-of-flight, gas ΔE-silicon E spectrometer and an internal gas jet. Measurement of the kinetic energy spectra from 5 to 100 MeV enabled an accurate determination of fragment cross sections from both xenon and krypton targets. Fragment spectra showed no significant dependence on beam energy for protons between 80 and 350 GeV/c. The observed isobaric yield is given by YαAf−τ, where τ∼2.6 for both targets; this also holds for correlated fragment data. The power law is the signature for the fragment formation mechanism. We treat the formation of fragments as a liquid-gas transition at the critical point. The critical temperature Tc can be determined from the fragment isotopic yields, provided one can set an energy scale for the fragment free energy. The high energy tails of the kinetic energy spectra provide evidence that the fragments originate from a common remnant system somewhat lighter than the target which disassembles simultaneously via Coulomb repulsion into a multibody final state. Fragment Coulomb energies are about 110 of the tangent sphere values. The remnant is characterized by a parameter T, obtained from the high energy tails of the kinetic energy distributions. T is interpreted as reflecting the Fermi momentum of a nucleon in this system. Since T≫Tc, and T is approximately that value expected for a cold nucleus, we conclude that the kinetic energy spectra are dominated by this nonthermal contribution. [NUCLEAR REACTIONS Xe(p,X), Kr(p,X), 80≤Eq≤350 GeV; measured σ(E,θ), X=Li to Al, θ=34∘. Fragmentation.]
No description provided.
New results on the forward produced protons and antiprotons in high energy muon-nucleon scattering are presented. Their W 2 , z and p 2 T dependences are compared with those of the other charged hadrons. Significant differences are observed which can be related to the flavour content of the target and to a difference between the baryon content of quark and gluon jets.
No description provided.
No description provided.
No description provided.
Inclusive ϱ 0 meson production has been measured in 120 GeV and 280 GeV muon-proton interactions. Distributions of z and p T 2 are presented. Primary ϱ 0 production is found to be equal to that of π 0 production within errors.
No description provided.
No description provided.
This Letter presents measurements of the nucleon structure function F2(x,Q2) based on the deep-inelastic scattering of 215- and 93-GeV muons in the iron multimuon spectrometer at Fermilab. With use of a lowest-order QCD calculation, a value of ΛLO=230±40(stat.)±80(syst.) MeV/c is found.
No description provided.
No description provided.
No description provided.
Results on moments of the azimuthal angle ϕ of final state hadrons from 120 GeV and 280 GeV μp scattering are presented. A ϕ asymmetry is observed and its W 2 , Q 2 , z and p T dependences compared with model calculations which include intrinsic transverse momentum and first order QCD corrections. These studies indicate that the observed asymmetry is mainly due to intrinsic transverse momentum k T .
No description provided.
Typical phi distribution.
No description provided.
Thez andpT2 distributions of π0 mesons produced by the interaction of 200 GeV muons on hydrogen are presented. Comparisons are made with other π0 and charged hadron data and with the predictions of perturbative QCD. The data show a rise of 〈pT2〉 withW2 which is consistent with QCD, and withz2 which requires a contribution from a primordialkT. The fraction of total energy which appears as π0 mesons is 0.27±0.05.
No description provided.
In an experiment with the hydrogen bubble chamber BEBC at CERN multiplicities of hadrons produced in νp and v p interactions have been investigated. Results are presented on the multiplicities of charged hadrons and neutral pions, forward and backward multiplicities of charged hadrons and correlations between forward and backward multiplicities. Comparisons are made with hadronic reactions and e + e − annihilation. In the framework of the quark-parton model the data imply similar charged multiplicities for the fragments of a u- and a d-quark, and a larger multiplicities for the fragments of a uu- than for a ud-diquark. The correlation data suggest independent fragmentation of the quark and diquark for hadronic masses above ∼ 7 GeV and local charge compensation within an event.
No description provided.
No description provided.
No description provided.
Using the data on deep inelastic muon scattering on iron and deuterium the ratio of the nucleon structure functions F 2 N ( Fe )/ F 2 N ( D ) is presented. The observed x -dependence of this ratio is in disagreement with existing theoretical predictions.
RANGE OF Q*2 VARIES WITH X. E.G. AT X=0.05 , 9<Q2<27. AT X=0.65 , 36<Q2<170 GEV**2.
The deuteron structure function F 2 d has been measured in 280 GeV μ + d interactions. Existing measurements of F 2 p , made with the same apparatus, are used to calculate F 2 p − F 2 n and F 2 n F 2 p . The ratio F 2 n F 2 p has a similar x dependence to that of earlier measurements at lower Q 2 .
No description provided.
No description provided.
No description provided.