The jet fragmentation function and transverse profile for jets with 25 GeV < ptJet < 500 GeV and etaJet<1.2 produced in proton-proton collisions with a center-of-mass energy of 7 TeV are presented. The measurement is performed using data with an integrated luminosity of 36 pb^-1. Jets are reconstructed and their momentum measured using calorimetric information. The momenta of the charged particle constituents are measured using the tracking system. The distributions corrected for detector effects are compared with various Monte Carlo event generators and generator tunes. Several of these choices show good agreement with the measured fragmentation function. None of these choices reproduce both the transverse profile and fragmentation function over the full kinematic range of the measurement.
Charged particle fragmentation function in the jet-Pt range 25 TO 40 GeV.
Charged particle fragmentation function in the jet-Pt range 40 TO 60 GeV.
Charged particle fragmentation function in the jet-Pt range 60 TO 80 GeV.
We have measured the differential production cross sections as a function of scaled momentum x_p=2p/E_cm of the identified hadron species pi+, K+, K0, K*0, phi, p, Lambda0, and of the corresponding antihadron species in inclusive hadronic Z0 decays, as well as separately for Z0 decays into light (u, d, s), c and b flavors. Clear flavor dependences are observed, consistent with expectations based upon previously measured production and decay properties of heavy hadrons. These results were used to test the QCD predictions of Gribov and Lipatov, the predictions of QCD in the Modified Leading Logarithm Approximation with the ansatz of Local Parton-Hadron Duality, and the predictions of three fragmentation models. Ratios of production of different hadron species were also measured as a function of x_p and were used to study the suppression of strange meson, strange and non-strange baryon, and vector meson production in the jet fragmentation process. The light-flavor results provide improved tests of the above predictions, as they remove the contribution of heavy hadron production and decay from that of the rest of the fragmentation process. In addition we have compared hadron and antihadron production as a function of x_p in light quark (as opposed to antiquark) jets. Differences are observed at high x_p, providing direct evidence that higher-momentum hadrons are more likely to contain a primary quark or antiquark. The differences for pseudoscalar and vector kaons provide new measurements of strangeness suppression for high-x_p fragmentation products.
Charged pion fraction and differential cross section per hadron Z0 decay. The last line in the table is the integral over the full X range of the measurement.. There is an additional 1.7 PCT normalization error (included in the integral).
Charged kaon fraction and differential cross section per hadron Z0 decay. The last line in the table is the integral over the full X range of the measurement.. There is an additional 1.7 PCT normalization error (included in the integral).
Proton fraction and differential cross section per hadron Z0 decay. The last line in the table is the integral over the full X range of the measurement.. There is an additional 1.7 PCT normalization error (included in the integral).
The fragmentation function for the process e+e−→h+X, whereh represents a hadron, may be decomposed into transverse, longitudinal and asymmetric contributions by analysis of the distribution of polar production angles. A number of new tests of QCD have been proposed using these fragmentation functions, but so far no data have been published on the separate components. We have performed such a separation using data on charged particles from hadronic Z0 decays atOpal, and have compared the results with the predictions of QCD. By integrating the fragmentation functions, we determine the average charged particle multiplicity to be\(\overline {n_{ch} }= 21.05 \pm 0.20\). The longitudinal to total cross-section ratio is determined to be σL/σtot=0.057±0.005. From the longitudinal fragmentation function we are able to extract the gluon fragmentation function. The connection between the asymmetry fragmentation function and electroweak asymmetrics is discussed.
Transverse component of the fragmentation function.
Longitudinal component of the fragmentation function.
Asymmetry component of the fragmentation function.
A study of the production of strange octet and decuplet baryons in hadronic decays of the Z recorded by the DELPHI detector at LEP is presented. This includes the first measurement of the∑± average multiplicity. The total and differential cross sections, the event topology and the baryon-antibaryon correlations are compared with current hadronization models.
No description provided.
No description provided.
No description provided.