The inclusive production cross sections and mean multiplicities of π±, K±, p, and p¯ in e+e− annihilation at a c.m. energy of 29 GeV have been measured with the time-projection chamber at PEP, using ionization energy loss to separate particle types. On average, 10.7±0.6 π±, 1.35±0.13 K±, and 0.60±0.08 p,p¯ are contained in an annihilation event. The fraction of pions among final-state particles decreases from over 95% at 0.3 GeV/c momentum to about 60% at high momentum; the kaon and proton fractions rise correspondingly.
PARTICLE FRACTIONS.
PARTICLE FRACTIONS.
PARTICLE FRACTIONS.
The total cross sections for νμn and νμp charged-current interactions and their ratio R=σT(νn)σT(νp) have been measured as a function of neutrino energy from 0.4 to 10 GeV. The experiment is performed using the BNL 7-foot deuterium bubble chamber exposed to the Alternating Gradient Synchrotron wide-band neutrino beam. The absolute values of the cross sections are normalized to the quasielastic scattering (νμn→μ−p) cross section. Above 1.6 GeV the data are consistent with the quark-parton model. We find that σT(νn)Eν=(1.07±0.05)×10−38, σT(νp)Eν=(0.54±0.04)×10−38, and σT(νN)Eν=(0.80±0.03)×10−38 cm2/GeV for 〈Eν〉=3.2 GeV, and R=1.95±0.10 for 〈Eν〉=3.7 GeV.
Axis error includes +- 0.0/0.0 contribution (?////SYSTEMATIC ERROR NOT GIVENNEUTRAL CURRENT AND NEUTRAL PARTICLES INDUCED REACTIONS, RESCATTERING IN DEUTERIUM).
No description provided.
No description provided.
Results from K± elastic and inelastic scattering from C12 and Ca40 are reported. The data were all taken at an incident momentum of 800 MeV/c over an angular range from 2° to 38°. The elastic data are compared to first-order optical model calculations in coordinate and momentum space; good qualitative agreement is obtained. The inelastic data (from C12 only) are compared to distorted-wave Born approximation calculations, and good agreement is found if "realistic" inelastic transition densities are used. Although a first-order optical potential description does not describe the data fully, there are strong indications of the increased penetrability of K+ over K− in this energy range. NUCLEAR REACTIONS C12(K±,K±)C12, Ca40(K±,K±)Ca40, E=442 MeV (800 MeV/c), measured σ(θ) for elastic and inelastic scattering, compared to optical model and DWBA calculations, deduced optical potential parameters; θ=2°−38°, Δθ=1°.
X ERROR D(THETA) = 1.0100 DEG.
X ERROR D(THETA) = 1.0100 DEG.
X ERROR D(THETA) = 1.1000 DEG.
The Fermilab 15-ft bubble chamber, filled with a heavy neon-hydrogen mix, was exposed to a narrow-band νμ beam. Based on the observation of 830 charged-current νμ interactions, the cross section was found consistent with a linear rise with the neutrino energy in the interval 10 GeV<~Eν≲240 GeV. The average slope was determined to be σνEν=(0.62±0.05)×10−38 cm2 GeV−1.
Measured charged current total cross section.
No description provided.
The quasielastic reaction νμn→μ−p was studied in an experiment using the BNL 7-foot deuterium bubble chamber exposed to the wide-band neutrino beam with an average energy of 1.6 GeV. A total of 1138 quasielastic events in the momentum-transfer range Q2=0.06−3.00 (GeV/c)2 were selected by kinematic fitting and particle identification and were used to extract the axial-vector form factor FA(Q2) from the Q2 distribution. In the framework of the conventional V−A theory, we find that the dipole parametrization is favored over the monopole. The value of the axial-vector mass MA in the dipole parametrization is 1.07±0.06 GeV, which is in good agreement with both recent neutrino and electroproduction experiments. In addition, the standard assumptions of conserved vector current and no second-class currents are checked.
Measured Quasi-Elastic total cross section.
The reaction π − p → φφ n has been isolated at 16 GeV/ c and its cross section determined to be 40 ± 10 nb. The φφ mass spectrum shows a threshold enhancement between 2.1 and 2.5 GeV. A successful description of the angular content of the φφ system requires two interferingss J P = 2 + states.
No description provided.
SLOPE OF DIFFERENTIAL TP(P=3,P=2) DISTRIBUTION.