The experimentally determined average charged-particle multiplicities, 〈nX〉, of the systems, X, produced in the following reactions for 147 GeV/c incident pion momentum are presented as functions of the square of the invariant mass of X, MX2, and of |t|:π−p→πfast−X, π−p→pX, π−p→Δ++X, π−p→(π−π+)ρ0X, and π−p→Λ0X. Details of the analysis are discussed. These data can be fit by the expression 〈nX〉=A+B ln MX2+C|t| and the coefficients obtained for B are equal within their uncertainties. C is significantly different from zero only for π−p→πfast−X. These results and 〈nX〉 data from other inclusive and total-inelastic-reaction studies are discussed in terms of a simple model which assumes contributions to 〈nX〉 from the target-fragmentation, the central, and the beam-fragmentation regions in the case of total-inelastic reactions. For inclusive reactions, either the beam or target fragmentation is replaced by an exchange-particle-fragmentation contribution. The s, t, and MX2 dependence of the parameters of the model are deduced from triple-Regge considerations. The data are found to be consistent with the model and values are presented for the parameters.
No description provided.
No description provided.
New data for the reaction e + e − →ϒ(9.46) have been obtained using the DASP detector at the DORIS storage ring. The electronic width Γ ee is (1.5±0.4) keV. The branching ratio for the decay into muon pairs is (2.5 ± 2.1)%. Energy spectra for inclusive production of hadrons are given.
VISIBLE HADRONIC TOTAL CROSS SECTION.
INVARIANT INCLUSIVE PRODUCTION CROSS SECTION E*D3(SIG)/DP**3 BOTH ON AND OFF THE UPSILON(9.46) RESONANCE. NO SIGNIFICANT DIFFERENCE IN EXPONENTIAL SLOPE AS A FUNCTION OF PARTICLE ENERGY E(P=3).
On a selected sample of 2171 events, observed in the big heavy liquid bubble chamber Gargamelle at CERN, the charged current total cross section for antineutrino on nucleons has been determined up to the laboratory energy E v ̄ = 8 GeV . The total cross section is found to be a linear function of the antineutrino energy expressed by σ tot (E v ̄ ) = (0.26 ± 0.020) × 10 −38 × E v ̄ ( GeV ) cm 2 . The energy dependence of 〈q 2 〉 v ̄ is found to be given by 〈q 2 〉 v ̄ = (0.15 ± 0.04)E v ̄ + (0.05 ± 0.12) ( GeV /c) 2 . With a simplified nuclear model the ratio of cross sections on neutrons andprotons has been estimated as a function of energy and for two different values of the scaling variable x . The results are compared with the prediction of the naive quark parton model.
Measured charged current total cross section.
The inclusive production of Ξ − and Ξ ∗0 (1530) is investigated in K − p interactions at 10 and 16 GeV/ c . The inclusive production cross sections are 172 ± 20 μ b and 135 ± 15 μ b for the Ξ − , and 43 ± 7 μ b and 32 ± 5 μ b for the Ξ ∗0 (1530) at 10 and 16 GeV /c , respectively. In the beam momentum range up to 16 GeV/ c , the energy dependence of the cross section for Ξ − production in K − p interactions is similar to Σ − production in π − p interactions. It is, instead, different from the energy behaviour of Σ − production cross sections observed in π − p interactions. The Ξ − and Ξ ∗0 (1530) are both produced more in the forward ( x > 0) than in the backward hemisphere, indicating the presence of hyperon-exchange processes.
No description provided.
No description provided.
On 8 K events of the reaction p p π + π − at 7.23 GeV/ c simple selection on angular parameters is performed yielding a sample of events with the typical features of diffraction dissociation. A cross section of 1.22 ± 0.08 mb (in two vertices) and a slope of the t distribution of 12.6 ± 1.0 GeV −2 for − t < 0.1 GeV 2 are obtained for the diffraction fraction dissociation p → p π + π − + c.c. Using an analogous selection procedure, another sample of events is isolated that is characterized by double resonance production. Cross sections for Δ Δ and Δ Δ ′ + c.c. production amount to 1.27 ± 0.09 mb and 0.23 ± 0.07 mb respectively. Diffraction dissociation and double resonance production together make up for 87% of the total cross section for the reaction p p → p p π + π − , which is 3.11 ± 0.13 mb.
No description provided.
EXPONENTIAL FIT TO D(SIG)/DT IN THREE REGIONS OF T. FOR EVENTS WITH M(P PI+) AND M(AP PI-) < 1.4 GEV.
No description provided.
We present results on a number of non-diffractive two-body channels contributing to reactions K + p→K 0 π + p and K + p→K + π − π + p. The data come from an exposure of the Mirabelle bubble chamber to an r.f. separated K + beam of 32 GeV/ c at the Serpukhov accelerator. Total cross sections are given for the final states K ∗+ (890) p , K ∗+ (1420) p , K 0 Δ ++ (1232), K ∗+ (890) p , Δ ++ (1232), K ∗0 (1420) Δ ++ (1232), K ∗0 (1780) Δ ++ (1232) and K ∗0 (890) Δ ++ (1950) . The differential cross sections are given for all channels with sufficient statistics. The energy dependence of the total and differential cross sections is studied.
FROM K0 P PI+ FINAL STATE.
DOUBLE RESONANCE CHANNEL CROSS SECTIONS CORRECTED FOR BACKGROUND, BREIT-WIGNER TAILS AND DIFFRACTIVE PROCESSES.
No description provided.
None
Measured Quasi-Elastic total cross section.
None
No description provided.
The production of KS, Λ, Λ¯, and γ in π−p collisions at 147 GeV/c is analyzed. Cross sections, rapidity, Feynman-x, and pT2 distributions are presented and compared to charged-particle production. The energy dependence of multiplicities in π−p and pp collisions is shown. A new scaling form for the correlation of neutral- and charged-particle multiplicities is presented for compilations of πp and pp data.
Axis error includes +- 0.0/0.0 contribution (?////ERRORS QUOTED ARE MAINLY STATISTICAL BUT INCLUDE CONTRIBUTIONS FROM ESTIMATES OF CONTAMINATION AND OF THE RELIABILITY OF WEIGHTING SCHEMES10 PCT OF ALAMBDA EVENTS COULD BE GAMMA CONTAMINATION, 0.5 PCT OF KS EVENTS COULD HAVE BEEN MISCLASSIFIED AS GAMMA'S).
Axis error includes +- 0.0/0.0 contribution (?////ERRORS QUOTED ARE MAINLY STATISTICAL BUT INCLUDE CONTRIBUTIONS FROM ESTIMATES OF CONTAMINATION AND OF THE RELIABILITY OF WEIGHTING SCHEMES10 PCT OF ALAMBDA EVENTS COULD BE GAMMA CONTAMINATION, 0.5 PCT OF KS EVENTS COULD HAVE BEEN MISCLASSIFIED AS GAMMA'S).
We report the first measurement of the ratio R=(σe+e−→hadrons)(σe+e−→μ+μ−) (with negligible τ-lepton contribution) at a center-of-mass energy s=13 GeV and s=17 GeV, from the just finished electron-positron colliding-beam facility PETRA. The detector, MARK-J, has an approximately 4π solid angle and measures γ, e, μ, and charged and neutral hadrons simultaneously. Our results yield R(s=17 GeV)=4.9±0.6 (statistical) ±0.7 (systematic error), and R(s=13 GeV)=4.6±0.5 (statistical) ±0.7 (systematic error). The ratio R(s=17 GeV)R(s=13 GeV) is 1.08±0.18.
No description provided.
No description provided.