Two high statistics measurements of antiproton-proton small-angle elastic scattering, at p = 233 MeV/ c and p = 272 MeV/ c , are presented. The measurements were carried out at the LEAR facility at CERN. By the Coulomb-nuclear interference method, values are obtained for the real-to-imaginary ratio ρ of the p̄p forward nuclear scattering amplitude and for its exponential slope b : ρ = + 0.041 ± 0.026 and b = 71.5 ± 4.5 (GeV/ c ) −2 at 233 MeV/ c and ρ = −0.014 ± 0.027 and b = 47.7 ± 2.7 (GeV/ c ) −2 at 272 MeV/ c . The method to derive these values is discussed in detail and so are the uncertainties contributing to their systematic error. The results are compared with predictions from forward dispersion relation calculations and with predictions from p̄p potential models.
The corrected cross section is the measured divided by the average folding correction given in the paper.
The corrected cross section is the measured divided by the average folding Correction given in the paper.
Fits to data use the value of total cross sections of 263 & 296 mb for 272 & 233 Mev respectively derived from the authors total cross sections measurement. ETA is the spin dependence parameter.
p̄p total cross sections have been measured from 220 to 413 MeV/ c in small (⩽ 10 MeV/ c ) steps of momentum with statistics of ± 0.5 %. There is no evidence for structure in the cross section, and a limit of 8 mb MeV/ c 2 is set with 90% confidence on the strength of any narrow resonance down to 250 MeV/ c .
Data taken with long target.
Data taken with short target.
We report measurements of the two-photon processes e+e−→e+e−π+π− and e+e−→e+e−K+K−, at an e+e− center-of-mass energy of 29 GeV. In the π+π− data a high-statistics analysis of the f(1270) results in a γγ width Γ(γγ→f)=3.2±0.4 keV. The π+π− continuum below the f mass is well described by a QED Born approximation, whereas above the f mass it is consistent with a QCD-model calculation if a large contribution from the f is assumed. For the K+K− data we find agreement of the high-mass continuum with the QCD prediction; limits on f′(1520) and θ(1720) formation are presented.
Data read from graph. Additional overall systematic error 20% not included.
Data read from graph.. Additional overall systematic error 20% not included.
Data read from graph.. Additional overall systematic error 20% not included.. The Q**2 dependence is normalized to unity for the bin centred on Q**2 = 0.
The cross section for the production of π+π− or K+K− pairs in γγ interactions is measured for mππ between 1.7 and 3.5 GeV/c2 and for two intervals of γγ center-of-mass scattering angle. Results are compared with predictions of a QCD model.
Data read off graph.
Data read off graph.
We report a measurement of the reaction γγ→K+K−π+π− in both tagged and untagged events at PEP. The cross section rises with invariant γγ mass to about 15 nb at 2 GeV and falls slowly at higher masses. We find clear evidence for the processes γγ→φπ+π− and γγ→K*0(892)Kπ. Upper limits (95% C.L.) of 1.5 and 5.7 nb in the mass range from 1.7 to 3.7 GeV are obtained for φρ0 and K*0K¯*0 production, respectively.
No description provided.
No description provided.
Untagged sample, (non-resonant).
Measurements are reported of p̄p total cross sections from 388 to 599 MeV/ c in small momentum steps. Statistical errors are typically ±0.4%and the normalisation uncertainty is ±0.7%. There is no evidence for the “S-meson”.
DATA TAKEN WITH 8.33 CM LH2 TARGET.
DATA TAKEN WITH 1.17 CM LH2 TARGET.
We have studied several features of the production of charged-hardon pairs by γγ collisions. We have measured the f0 partial width Γf0→γγ(Q2) for Q2 in the range 0<Q2<1.4 GeV2/c2, and obtained Γf0→γγ=2.52±0.13±0.38 keV at Q2≈0. The measured Q2 dependence is in agreement with the generalized vector-dominance model. The cross section for γγ→(π+π−+K+K−) in the mass region 1.6≤Mππ≤2.5 GeV/c2 has also been measured and the result compared with that expected from the QCD continuum.
Data read from graph.. Both statistical and systematic errors included.
Measurements have been made of the polarisation parameters G and H for the process γ p→ π + n in the photon energy range 600–1875 MeV and pion c.m. angles between 30° and 100°. These data were obtained in a double polarisation experiment, in which the polarised photon beam from the Daresbury electron synchrotron was incident upon a polarised proton target. Theoretical predictions from a current analysis are compared with the data.
No description provided.
No description provided.
No description provided.
Measurements have been made of the double polarisation parameters G and H in the photoproduction of neutral pions from protons, for incident photon energies between 1300 MeV and 2300 MeV and for pion c.m. angles between 50δ and 80δ. The results are compared with predictions from a recent comprehensive analysis of earlier photoproduction data.
No description provided.
No description provided.
No description provided.
Measurements have been made of the polarisation parameters Σ , T and P for the process γ p → π + n in the photon energy range 520–2250 MeV at c.m. angles between 30° and 120°. These data were obtained in a double polarisation experiment, using the polarised photon beam from the Daresbury electron synchrotron incident on a polarised proton target. The data are compared with predictions from current theoretical analyses.
No description provided.
No description provided.