Asymmetries A 0 n have been measured at LEAR for s¯s elastic scattering for 15 beam momenta from 497 to 1550 MeV/ c .
No description provided.
No description provided.
No description provided.
The depolarization parameter D onon in p p elastic scattering has been measured at LEAR for thirteen momenta between 679 and 1550 MeV/c in the backward angular region. Striking disagreement with theoretical models is observed.
No description provided.
No description provided.
No description provided.
The ratio of the real to the imaginary part of the pp forward elastic-scattering amplitude ϱ has been measured at 550, 757, and 1077 MeV/ c at LEAR, using the Coulomb-nuclear interference method. The results obtained for ρ and b , the nuclear slope, are ϱ = 0.084 ± 0.051 and b = 20.9 ± 2.1 (GeV/ c ) −2 at 550 MeV/ c , ϱ = 0.102 ± 0.043 and b = 18.0 ± 0.5 (GeV/ c ) −2 = at 757 MeV/ c , and ϱ = 0.059 ± 0.035 and b = 15.2 ± 0.3 (GeV/ c ) −2 at 1077 MeV/ c .
Error on SLOPE is statistical only.
Measured differential cross sections corrected for small-angle trigger efficiency and absorption losses. Statistical errors only.
Measured differential cross sections corrected for small-angle trigger efficiency and absorption losses. Statistical errors only.
Two high statistics measurements of antiproton-proton small-angle elastic scattering, at p = 233 MeV/ c and p = 272 MeV/ c , are presented. The measurements were carried out at the LEAR facility at CERN. By the Coulomb-nuclear interference method, values are obtained for the real-to-imaginary ratio ρ of the p̄p forward nuclear scattering amplitude and for its exponential slope b : ρ = + 0.041 ± 0.026 and b = 71.5 ± 4.5 (GeV/ c ) −2 at 233 MeV/ c and ρ = −0.014 ± 0.027 and b = 47.7 ± 2.7 (GeV/ c ) −2 at 272 MeV/ c . The method to derive these values is discussed in detail and so are the uncertainties contributing to their systematic error. The results are compared with predictions from forward dispersion relation calculations and with predictions from p̄p potential models.
The corrected cross section is the measured divided by the average folding correction given in the paper.
The corrected cross section is the measured divided by the average folding Correction given in the paper.
Fits to data use the value of total cross sections of 263 & 296 mb for 272 & 233 Mev respectively derived from the authors total cross sections measurement. ETA is the spin dependence parameter.
Measurements have been made of the differential cross section and asymmetry A on for p p elastic scattering at 15 incident momenta between 497 MeV/ c and 1550 MeV/ c . The angular range where both particles have enough energy to traverse target and setup has been covered. The results are compared with predictions of various N N potential models. None of these models fully explains the present results, although the general trend of the data is predicted correctly.
No description provided.
No description provided.
No description provided.
A spin-parity analysis is performed of the low-mass (≤ 1.75 GeV/c2) pπ− system in diffractive np→(pπ−)p using new data at 13 GeV/c and 20 GeV/c. In the context of a Deck-plus-resonances model a good fit to the pπ− angular moments is found only if the Gribov-Morrison parity-change rule does not hold and spin states up to j=52 are included. In particular the presence of a considerable fraction of spin-parity ½− state is indicated.
DECK MODEL PLUS RESONANCES FIT TO DIFFRACTIVE EVENTS.
Photon diffractive dissociation, $\gamma p \to Xp$, has been studied at HERA with the ZEUS detector using $ep$ interactions where the virtuality $Q^2$ of the exchanged photon is smaller than 0.02 GeV$^2$. The squared four-momentum $t$ exchanged at the proton vertex was determined in the range $0.073<|t|<0.40$ GeV$^2$ by measuring the scattered proton in the ZEUS Leading Proton Spectrometer. In the photon-proton centre-of-mass energy interval $176<W<225$ GeV and for masses of the dissociated photon system $4<M_X<32$ GeV, the $t$ distribution has an exponential shape, $dN/d|t| \propto \exp{(-b|t|)}$, with a slope parameter $b=6.8 \pm 0.9$~(stat.)~$ ^{+1.2}_{-1.1}$~(syst.)~GeV$^{-2}$.
T is the squared four momentum transfer at the proton vertex.
SLOPE of the DN/DT distribution.
Photon proton cross sections for elastic light vector meson production, σelνp, inelastic diffractive production, σndνp, non-diffractive production, σdνp, as well as the total cross section, σtotνp, have been measured at an average υp center of mass energy of 180 GeV with the ZEUS detector at HERA. The resulting values are σelνp = 18 ± 7 μb, σdνp = 33 ± 8 μb, σndνp = 91 ± 11 μb, and σtotνp 143 ± 17 μb, where the errors include statistical and systematic errors added in quadrature.
Errors contain both statistics and systematics.
We present results from a measurement of double diffraction dissociation in $\bar pp$ collisions at the Fermilab Tevatron collider. The production cross section for events with a central pseudorapidity gap of width $\Delta\eta^0>3$ (overlapping $\eta=0$) is found to be $4.43\pm 0.02{(stat)}{\pm 1.18}{(syst) mb}$ [$3.42\pm 0.01{(stat)}{\pm 1.09}{(syst) mb}$] at $\sqrt{s}=1800$ [630] GeV. Our results are compared with previous measurements and with predictions based on Regge theory and factorization.
Cross sections for double diffractive production.
We report the first observation of diffractively produced W bosons. In a sample of W -> e nu events produced in p-barp collisions at sqrt{s}=1.8 TeV, we find an excess of events with a forward rapidity gap, which is attributed to diffraction. The probability that this excess is consistent with non-diffractive production is 1.1 10^{-4} (3.8 sigma). The relatively low fraction of W+Jet events observed within this excess implies that mainly quarks from the pomeron, which mediates diffraction, participate in W production. The diffractive to non-diffractive W production ratio is found to be R_W=(1.15 +/- 0.55)%.
No description provided.