In the process e+e- to hadrons, one of the effects of gluon emission is to modify the 1+cos(theta)**2 form of the angular distribution of the thrust axis, an effect which may be quantified by the longitudinal cross-section. Using the OPAL detector at LEP, we have determined the longitudinal to total cross-section ratio to be 0.0127+-0.0016+-0.0013 at the parton level, in good agreement with the expectation of QCD computed to Order(alpha_s**2) Comparisions at the hadron level with Monte Carlo models are presented. The dependence of the longitudinal cross-section on the value of thrust has also been studied, and provides a new test of QCD.
Values of SIG(C=L) integrated over all Thrust.
Measured values of the differential cross section, and the corresponding ratio of longitudinal to total cross sections, corrected to the hadron level.
We report on the measurement of W-boson pair-production with the L3 detector at LEP. In a data sample corresponding to a total luminosity of 55.47 pb −1 collected at an average centre-of-mass energy of 182.68 GeV , we select 824 four-fermion events with pairs of hadronic jets or pairs of leptons with high invariant masses. Branching fractions of W decays into different fermion-antifermion pairs are determined. Assuming charged-current lepton universality, the branching fraction for hadronic W decays is measured to be: B( W→hadrons )=70.1±1.3 (stat.)±0.4 (syst.) % . Combining all final states the total cross section for W-pair production is measured to be: σ WW =16.53±0.67 (stat.)±0.26 (syst.) pb.
Cross section with LEPTON is evaluated under lepton universality assumption.
No description provided.
Di-jet production is studied in collisions of quasi-real photons radiated by the LEP beams at e+e- centre-of-mass energies 161 and 172 GeV. The jets are reconstructed using a cone jet finding algorithm. The angular distributions of direct and double-resolved processes are measured and compared to the predictions of leading order and next-to-leading order perturbative QCD. The jet energy profiles are also studied. The inclusive two-jet cross-section is measured as a function of transverse energy and rapidity and compared to next-to-leading order perturbative QCD calculations. The inclusive two-jet cross-section as a function of rapidity is compared to the prediction of the leading order Monte Carlo generators PYTHIA and PHOJET. The Monte Carlo predictions are calculated with different parametrisations of the parton distributions of the photon. The influence of the `underlying event' has been studied to reduce the model dependence of the predicted jet cross-sections from the Monte Carlo generators.
Differential 2-jet cross section as a function of cos(theta*) for 'double-resolved' and 'direct' events.
No description provided.
No description provided.
Di-jet event rates have been measured for deep-inelastic scattering in the kinematic domain ~5 < Q^2 < ~100 GeV^2 and ~10^(-4) < x_Bj < ~10^(-2), and for jet transverse momenta squared p_t^2 > ~Q^2. The analysis is based on data collected with the H1 detector at HERA in 1994 corresponding to an integrated luminosity of about 2 pb^(-1). Jets are defined using a cone algorithm in the photon-proton centre of mass system requiring jet transverse momenta of at least 5 GeV. The di-jet event rates are shown as a function of Q^2 and x_Bj. Leading order models of point-like interacting photons fail to describe the data. Models which add resolved interacting photons or which implement the colour dipole model give a good description of the di-jet event rate. This is also the case for next-to-leading order calculations including contributions from direct and resolved photons.
Di-jet rates for 'Symmetric' and 'Asymmetric' scenarios for jet energy cuts.
Di-jet rates for 'Sum' scenario for jet energy cuts.
Di-jet rates for 'Symmetric' and 'Asymmetric' scenarios for jet energy cuts.
We have searched for the production of a selectron and a squark in $e^+p$ collisions at a center-of-mass energy of 300 GeV using the ZEUS detector at HERA. The selectron and squark are sought in the direct decay into the lightest neutralino in the framework of supersymmetric extensions to the Standard Model which conserve R-parity. No evidence for the production of supersymmetric particles has been found in a data sample corresponding to 46.6~pb$^{-1}$ of integrated luminosity. We express upper limits on the product of the cross section times the decay branching ratios as excluded regions in the parameter space of the Minimal Supersymmetric Standard Model.
No description provided.
Events with a (2+1) jet topology in deep-inelastic scattering at HERA are studied in the kinematic range 200 < Q^2< 10,000 GeV^2. The rate of (2+1) jet events has been determined with the modified JADE jet algorithm as a function of the jet resolution parameter and is compared with the predictions of Monte Carlo models. In addition, the event rate is corrected for both hadronization and detector effects and is compared with next-to-leading order QCD calculations. A value of the strong coupling constant of alpha_s(M_Z^2)= 0.118+- 0.002 (stat.)^(+0.007)_(-0.008) (syst.)^(+0.007)_(-0.006) (theory) is extracted. The systematic error includes uncertainties in the calorimeter energy calibration, in the description of the data by current Monte Carlo models, and in the knowledge of the parton densities. The theoretical error is dominated by the renormalization scale ambiguity.
Y2 distribution corrected for detector effects.
Y2 distribution corrected for both detector and hadronization effects.
Y2 distribution using the E, E0 and P variants of the JADE alogrithm, corrected for both detector and hadronization effects. Statistical errors only.
We report on a study of radiative Bhabha and quasi-real Compton scattering at centre-of-mass energies between 50 GeV and 170 GeV, and 20 GeV and 140 GeV, respectively, using the L3 detector at LEP. The analysis is based on data corresponding to an integrated luminosity of 232.2 pb −1 . A total of 2856 radiative Bhabha and 4641 Compton scattering events are collected. Total and differential cross sections for both reactions are presented and found to be in good agreement with QED expectations. Our measurement of Compton scattering at the highest energies obtained so far is used to derive exclusion limits on the coupling λ for the on-shell production of an excited electron e ★ decaying into a γ e pair in the mass range 20 GeV
Measured cross sections for radiative Bhabha scattering events.
Measured cross sections for the quasi-real Compton scattering events.
The hadronic photon structure function F γ 2 is studied in the reaction e + e − →e + e − hadrons at LEP with the L3 detector. The data, collected from 1991 to 1995 at a centre-of-mass energy s ≃91 GeV, correspond to an integrated luminosity of 140 pb −1 . The photon structure function F γ 2 is measured in the Q 2 interval 1.2 GeV 2 ≤ Q 2 ≤9.0 GeV 2 and the x interval 0.002< x <0.2. F γ 2 shows a linear growth with ln Q 2 . The value of the slope α −1 d F γ 2 ( Q 2 )/dln Q 2 is measured to be 0.079±0.011±0.009.
No description provided.
No description provided.
No description provided.
We report on a study of single W boson production in a data sample collected by the L3 detector at centre-of-mass energies from 130 to 183 GeV. The signal consists of large missing energy final states with a single energetic lepton or two hadronic jets. The measured cross sections at five different centre-of-mass energies are consistent with the Standard Model expectations. The following limits on the anomalous WW γ gauge couplings are derived at 95% CL: −0.46< Δκ γ <0.57 and −0.86< λ γ <0.75.
The absence of the negative-side statistical error indicate that zero signal cross section is not excluded at 68% CL.
Cross sections from overall fit to all processes at 183 GeV.
The process e+e- to gamma gamma (gamma) is studied using data recorded with the OPAL detector at LEP. The data sample corresponds to a total integrated luminosity of 56.2 pb-1 taken at a centre-of-mass energy of 183 GeV. The measured cross-section agrees well with the expectation from QED. A fit to the angular distribution is used to obtain improved limits at 95% CL on the QED cut-off parameters: Lambda+ > 233 GeV and Lambda- > 265 GeV as well as a mass limit for an excited electron, M(e*) > 227 GeV assuming equal e*egamma and eegamma couplings. No evidence for resonance production is found in the invariant mass spectrum of photon pairs. Limits are obtained for the cross-section times branching ratio for a resonance decaying into two photons.
No description provided.