We have searched for the pair production of first generation scalar leptoquarks in the eejj channel using the full data set (123 pb-1) collected with the D0 detector at the Fermilab Tevatron during 1992--1996. We observe no candidates with an expected background of approximately 0.4 events. Comparing the experimental 95% confidence level upper limit to theoretical calculations of the cross section with the assumption of a 100% branching fraction to eq, we set a lower limit on the mass of a first generation scalar leptoquark of 225 GeV/c^2. The results of this analysis rule out the interpretation of the excess of high Q^2 events at HERA as leptoquarks which decay exclusively to eq.
No description provided.
We present the xF and pT differential cross sections of J/ψ and ψ′, respectively, in the ranges −0.05
Additional systematic error given above.
Additional systematic error given above.
Additional systematic error given above.
Using the CLEO~II detector, we have measured the differential cross sections for exclusive two-photon production of light pseudoscalar mesons $\pi^0$, $\eta$, and $\eta^{\prime}$. From our measurements we have obtained the form factors associated with the electromagnetic transitions $\gamma^*\gamma$ $\to$ meson. We have measured these form factors in the momentum transfer ranges from 1.5 to 9, 20, and 30 GeV$^2$ for $\pi^0$, $\eta$, and $\eta^{\prime}$, respectively, and have made comparisons to various theoretical predictions.
The results of PI0 --> GAMMA GAMMA analysis assuming Br(PI0-->2GAMMA)=0.99.
The results of ETA --> GAMMA GAMMA analysis assuming Br(ETA-->2GAMMA)=0.39.
The results of ETA --> 3PI0 analysis assuming Br(ETA-->3PI0)*Br(PI0-->2GAM MA)**3 = 0.31.
The tensor analyzing power T 20 for the reaction d ↑ + 12 C → π ± (0°) + X has been measured with a polarized deuteron beam from 6.2 to 9.0 GeV/ c at a pion momentum3.0 GeV/ c . This experiment is focused on “cumulatively produced pions”, which are produced beyond the kinematically allowed limit for free nucleon-nucleon collisions. The measured values of T 20 turn out to be close to zero. They are in disagreement with the results of our impulse approximation calculation which is based on a single NN → πNN interaction and takes into account the internal motion of nucleons in the deuteron. Possible explanations of the result are discussed.
No description provided.
No description provided.
No description provided.
The cross section for bb¯ production in 800GeV/c pN interactions has been measured in Fermilab experiment E771 to be 43−17+27(stat)−7+7(syst)nb per nucleon from the observation of events in which both the b and the b¯ decay semimuonically or a B decays into a J/ψ followed by J/ψ→μ+μ−.
No description provided.
We have measured the dijet angular distribution in $\sqrt{s}$=1.8 TeV $p\bar{p}$ collisions using the D0 detector. Order $\alpha^{3}_{s}$ QCD predictions are in good agreement with the data. At 95% confidence the data exclude models of quark compositeness in which the contact interaction scale is below 2 TeV.
No description provided.
Results are presented of an analysis of the reactions pp -> pf(k0k+pi-)ps and pp -> pf(K0K0pi0)ps at 450 GeV/c. Clear f1(1285) and f1(1420) signals are seen and a spin parity analysis shows that both have IG JPC=0+ 1++. The f1(1285) decays to a0(980)pi and the f1(1420) decays to K* Kbar. Both states have a similar dependence as a function of dPT consistent with what has been observed for other qqbar states. Evidence is also presented for a K*Kbar decay mode of the eta2(1620).
SIG(C=TOT) denotes the total cross section for each resonance.
The e + e − → W + W − cross section is measured in a data sample collected by ALEPH at a mean centre-of-mass energy of 172.09 GeV, corresponding to an integrated luminosity of 10.65 pb −1 . Cross sections are given for the three topologies, fully leptonic, semi-leptonic and hadronic of a W-pair decay. Under the assumption that no other decay modes are present, the W-pair cross section is measured to be 11.7±1.2 (stat.) ±0.3 (syst.) pb . The existence of the triple gauge boson vertex of the Standard Model is clearly preferred by the data. The decay branching ratio of the W boson into hadrons is measured to be B(W→hadrons) =67.7±3.1 (stat.) ±0.7 (syst.) % , allowing a determination of the CKM matrix element | V cs |=0.98±0.14(stat.)±0.03(syst.).
Cross sections for the different topologies.
Combined W+ W- cross section.
The reaction pp -> pf (pi+pi-pi+pi-) ps has been studied at 450 GeV/c in an experiment designed to search for gluonic states. A spin analysis has been performed and the dPT filter applied. In addition to the well known f1(1285) there is evidence for two JPC=2-+ states called the eta2(1620) and eta2(1875) and a broad scalar called the f0(2000). The production of these states as a function of the dPT kinematical filter shows the behaviour expected for qqbar states. In contrast, there is evidence for two states at 1.45 GeV and at 1.9 GeV which do not show the behaviour observed for qqbar states.
SIG(C=TOT) denotes the total cross section for each resonance.
The production rates of D^*+/- mesons in charm and bottom events at centre-of-mass energies of about 91 GeV and the partial width of primary cc(bar) pairs in hadronic Z^0 decays have been measured at LEP using almost 4.4 million hadronic Z^0 decays collected with the OPAL detector between 1990 and 1995. Using a combination of several charm quark tagging methods based on fully and partially reconstructed D^*+/- mesons, and a bottom tag based on identified muons and electrons, the hadronisation fractions of charm and bottom quarks into D^*+/- mesons have been found to be: f(b -> D^*+ X) = 0.173 +/- 0.016 +/- 0.012 and f(c -> D^*+ X) = 0.222 +/- 0.014 +/- 0.014 The fraction of cc(bar) events in hadronic Z^0 decays, Gamma_cc(bar)/Gamma_had = Gamma(Z^0 -> cc(bar))/Gamma(Z^0 -> hadrons), is determined to be Gamma_cc(bar)/Gamma_had = 0.180 +/- 0.011 +/- 0.012 +/- 0.006 In all cases the first error is statistical, and the second one systematic. The last error quoted for Gamma_cc(bar)/Gamma_had is due to external branching ratios.
No description provided.
No description provided.
The second syst. errors results due to extranal branching ratios. Charge conjugated states are implied. FD is considered as a quark fragmentation fraction. Sqrt(s(E+ E-)) = 91.2 GeV.