Secondary beams of 3 He, 4 He, 6 He, and 8 He were produced through the projectile fragmentation of an 800 MeV/nucleon 11 B primary beam. Interaction cross sections ( σ I ) of all He isotopes of 790 MeV/nucleon on Be, C, and Al targets were measured by a transmission-type experiment. The interaction nuclear radii of He isotopes R I ( He ) = ( σ I π ) 1 2 − R I ( T ) where R I ( T ) is the radius of the target nucleus, have been deduced to be R I ( 3 He ) = 1.59 ± 0.06 fm , R I ( 4 He ) = 1.40 ± 0.05 fm , R I ( 6 He ) = 2.21 ± 0.06 fm , and R I ( 8 He ) = 2.52 ± 0.06 fm .
No description provided.
Interaction cross sections (σI) for all known Li isotopes (Li6-Li11) and Be7, Be9, and Be10 on targets Be, C, and Al have been measured at 790 MeV/nucleon. Root mean square radii of these isotopes as well as He isotopes have been deduced from the σI by a Glauber-type calculation. Appreciable differences of radii among isobars (He6-Li6, He8-Li8, and Li9-Be9) have been observed for the first time. The nucleus Li11 showed a remarkably large radius suggesting a large deformation or a long tail in the matter distribution.
No description provided.
The production of π±,K±,p has been measured in p+Be and p+Au collisions for comparison with central Si+Au collisions. The inverse slope parameters T0 obtained by an exponential fit to the invariant cross sections in transverse mass are found to be, T0p,K+,ππ∼140–160 MeV in p+A collisions, whereas in central Si+Au collisions, T0p,K+∼200–220 MeV >T0ππ∼140–160 MeV at midrapidity. The π± and K+ distributions are shifted backwards in p+Au compared with p+Be. A gradual increase of (dn/dy)K+ per projectile nucleon is observed from p+Be to p+Au to central Si+Au collisions, while pions show no significant increase.
No description provided.
No description provided.
No description provided.
Antiproton production cross sections have been measured for minimum bias and central Si+Al and Si+Au collisions at 14.6 A GeV c . The data presented cover the range of transverse momentum from 0.3 to 1.2 GeV c and lab rapidities from 1.1 to 1.7 units. The relative p π − and p K − yields are found to be the smallest for the heaviest system measured, central Si+Au collisions. For these collisions, the p π − ratio, determined from integrated yields for 1.1⩽ y ⩽1.7, is (0.84±0.07)×10 −3 . In the same rapidity interval, the average antiproton inverse m ⊥ slope is 141±14 MeV for central Si+Al and central Si+Au collisions.
Definition of the CENTRAL and MINIMUM BIAS events see text.
Definition of the CENTRAL and MINIMUM BIAS events see text.
Particle production in proton-induced reactions at 14.6 GeV/c on Be, Al, Cu, and Au targets has been systematically studied using the E-802 spectrometer at the BNL-Alternating Gradient Synchrotron. Particles are measured in the angular range from 5° to 58° and identified up to momenta of 5, 3.5, and 8 GeV/c for pions, kaons, and protons, respectively. Mechanisms for particle production are discussed in comparison with heavy-ion-induced reactions at the same incident energy per nucleon.
No description provided.
No description provided.
No description provided.
A systematic set of measurements of the global transverse energy distributions, dσ/dET and dET/dη, from beams of protons, O16 and Si28 at 14.6A GeV/c, incident on targets ranging from Be to Au is presented. The detector was a semicircular array of lead-glass blocks, covering polar angles 9°<θ<32°, whose total response provides a good measure of the produced particle yield in the central rapidity region of these reactions. Proton-nucleus spectra exhibit a similar shape on the high-energy tail, independent of target, suggesting that produced particles in such events arise mostly from the first collision of the projectile proton. For targets heavier than Cu, the high-energy edges of the oxygen-nucleus spectra, and of the silicon-nucleus spectra, reach ratios consistent with the geometry of central collisions. Angular distributions, dET/dη, are characterized by Gaussian fits, and an acceptance-independent form of the differential cross section is found, based on the maximum value of dET/dη. The projectile dependence of nucleus-nucleus spectra is studied in terms of two very different models: simple energy scaling and the wounded projectile nucleon model of p+A convolutions.
No description provided.
No description provided.
No description provided.
Negative pion spectra emitted in the reactions of 775 MeV/nucleon La139+12C and La139+139La reactions have been measured in coincidence with the projectile fragments using the HISS spectrometer at the Bevalac. Prominent peaks near the beam velocity were observed in the pion spectra. Position and widths of the peaks were studied as a function of the ‘‘sum charge’’ of projectile fragments which is a good measure of impact parameter; the smaller the ‘‘sum charge,’’ the smaller the impact parameter. The peak position down shifts with the smaller ‘‘sum charge.’’ The pion peak is wider in the transverse than in the longitudinal direction, possibly mirroring the velocity dispersions of projectile fragments in the early stage of reactions.
THE CHARGE IN THE TABLE IS THE SUM CHARGE OF OBSERVED FRAGB. A TWO-DIMENSIONAL SPECTRUM WAS FITTED BY A SINGLE TWO-DIMENSIONAL GAUSSIAN FUNCTION ON A FLAT BACKGROUND.
THE CHARGE IN THE TABLE IS THE SUM CHARGE OF OBSERVED FRAGB. A TWO-DIMENSIONAL SPECTRUM WAS FITTED BY A SINGLE TWO-DIMENSIONAL GAUSSIAN FUNCTION ON A FLAT BACKGROUND.
Measurements of the global transverse energy distributions dσ / dE T and dE T / dη using the new AGS beam of 197 Au at 11.6 A GeV/ c on a Au target, as well as a beam of 28 Si at 14.6 A GeV/ c on Al and Au targets, are presented for a leadglass detector with acceptance 1.3 ≤ η ≤ 2.4 and 0 ≤ φ < 2 π . The dσ / dE T spectra are observed to have different shapes for the different systems and simple energy rescaling does not account for the projectile dependence. The Au+Au dσ / dE T spectrum is satisfactorily constructed from the upper edge of Si+Au by the geometric Wounded Projectile Nucleon Model after applying a correction for the beam energy.
Incident energy is 14.6 GeV/nucleon.
Incident energy is 14.6 GeV/nucleon.
Incident energy is 11.6 GeV/nucleon.
A systematic study of the spectra and yields of K+ and K− is reported by experiment E866 as a function of centrality in Au+Au collisions at 11.6A GeV/c. The invariant transverse spectra for both kaon species are well described by exponentials in mt, with inverse slope parameters that are largest at midrapidity and which increase with centrality. The inverse slopes of the K+ spectra are slightly larger than the inverse slopes of the K− spectra. The kaon rapidity density peaks at midrapidity with the K+ distribution wider in rapidity than K−. The integrated total yields of K+ and K− increase nonlinearly and steadily with the number of projectile participants. The yield per participant for kaons is two to three times larger than the yield from N−N collisions. This enhancement suggests that the majority of kaons in central Au+Au reactions are produced in secondary hadronic collisions. There is no evidence for an onset of additional kaon production from a possible small volume of baryon-rich quark-gluon plasma. The differences between K+ and K− rapidity distributions and transverse spectra are consistent with a lower phase space for K− production due to a higher energy threshold. These differences also exclude simple thermal models that assume emission from a common equilibrated system.
In this case FRAGB=NUCLEAR FRAG + PROTONS.
In this case FRAGB = NUCLEAR FRAG + PROTONS.
In this paper Au+Au collisions at 11.6A GeV/c are characterized by two global observables: the energy measured near zero degrees (EZCAL) and the total event multiplicity. Particle spectra are measured for different event classes that are defined in a two-dimensional grid of both global observables. For moderately central events (σ/σint<12%) the proton dN/dy distributions do not depend on EZCAL but only on the event multiplicity. In contrast the shape of the proton transverse spectra shows little dependence on the event multiplicity. The change in the proton dN/dy distributions suggests that different conditions are formed in the collision for different event classes. These event classes are studied for signals of new physics by measuring pion and kaon spectra and yields. In the event classes doubly selected on EZCAL and multiplicity there is no indication of any unusual pion or kaon yields, spectra, or K/π ratio even in the events with extreme multiplicity.
Table for event classification (from CLASS1 to CLASS8) where ZCAL energy solely used for event selection. Number of Projectile Participants Npp=197*(1-E(P=3)/EKIN(P=1)).
CLASS1 (see Table for event classification).
CLASS1 (see Table for event classification).