The differential cross sections of π−p→γn at center-of-mass energy Ẽ=1363, 1337, and 1245 MeV are presented. The angular distributions are compared with recent γn→π−p experiments. Though the cross sections for π−p→γn are somewhat lower than those for the inverse reaction, when all uncertainties are considered, we find that our data are in acceptable agreement at all three energies with the inverse reaction determined from π−π+ ratio measurements, in support of time-reversal invariance. The agreement with bubble-chamber measurements at Ẽ=1363 and 1337 MeV is less satisfactory. The isotensor dip test applied to our data is inconclusive. Our measurements are compared with many multipole analyses, disagreeing with most, in particular with pure fixed- t dispersion relation calculations. We find no evidence, in the sense suggested by Donnachie, for the classification of the P11(1470) resonance in an SU(3) antidecuplet. The data are consistent with a small radiative decay of the P11(1470) resonance, as predicted by quark models.
Axis error includes +- 6/6 contribution.
Axis error includes +- 4.5/4.5 contribution.
Axis error includes +- 4.2/4.2 contribution.
Seventeen differential cross sections of the pion-nucleon charge-exchange reaction have been measured at total center-of-mass energies of 1245, 1337, and 1363 MeV. Most measurements are based on the neutron-photon coincidence method, using carefully calibrated neutron counters and an efficient, large-area photon detector. The results are used to test the predictions of charge independence, with which they agree. The results also confirm the Ayed-Bareyre-Sonderegger phase-degeneracy hypothesis at θ̃π0=180°.
No description provided.
No description provided.
No description provided.
A measurement of the differential cross section for the reaction n + p → d + π° has been made using a neutron beam with kinetic energies up to 720 MeV. The angle and momentum of the deuterons were measured using an analyzing magnet and wire spark chambers with a magnetostrictive readout. The photons from the decaying π° were not detected. The neutron energy was calculated from the measured deuteron angle and momentum. The cross sections are compared to those for the reaction π + + d ⇆ p + p as a test of isotopic spin invariance in strong interactions. The symmetry of the cross sections about 90° is also investigated, and an upper limit of about 1% is placed on the real part of the ratio of isospin-violating to isospin-conserving amplitudes.
EKIN IS 325 TO 675 MEV.
The elastic scattering of negative pions on protons at 2.26 GeVc has been studied using the Lawrence Radiation Laboratory 72-in. hydrogen-filled bubble chamber. The elastic scattering cross section is found to be 8.91±0.24 mb. The forward diffraction peak is well fitted by an exponential in the square of the four-momentum transfer, and the slope is found to be 8.8±0.1 GeV−2. The differential cross section is parametrized in terms of three models: optical, strong-absorption, and two-slope. It is found that the two-slope model affords the best description of the data and also does very well in predicting the polarization data of other experiments. The best-fit parameters for all three models are given. In addition, the amplitudes associated with the best fits are given for the strong-absorption and the two-slope models.
No description provided.