The transverse momentum (p_T) spectra and ratios of identified charged hadrons (\pi^+/-, K^+/-, p, p^bar) produced in sqrt(s_NN)=200 GeV Au+Au and d+Au collisions are reported in five different centrality classes for each collision species. The measurements of pions and protons are reported up to p_T=6 GeV/c (5 GeV/c), and the measurements of kaons are reported up to p_T=4 GeV/c (3.5 GeV/c) in Au+Au (d+Au) collisions. In the intermediate p_T region, between 2--5 GeV/c, a significant enhancement of baryon to meson ratios compared to those measured in p+p collisions is observed. This enhancement is present in both Au+Au and d+Au collisions, and increases as the collisions become more central. We compare a class of peripheral Au+Au collisions with a class of central d+Au collisions which have a comparable number of participating nucleons and binary nucleon-nucleon collisions. The p_T dependent particle ratios for these classes display a remarkable similarity, which is then discussed.
kaon AuAu Invariant yields versus $p_T$
kaon dAu Invariant yields versus $p_T$
pion AuAu Invariant yields versus $p_T$
In order to study further the long-range correlations ("ridge") observed recently in p+Pb collisions at sqrt(s_NN) =5.02 TeV, the second-order azimuthal anisotropy parameter of charged particles, v_2, has been measured with the cumulant method using the ATLAS detector at the LHC. In a data sample corresponding to an integrated luminosity of approximately 1 microb^(-1), the parameter v_2 has been obtained using two- and four-particle cumulants over the pseudorapidity range |eta|<2.5. The results are presented as a function of transverse momentum and the event activity, defined in terms of the transverse energy summed over 3.1<eta<4.9 in the direction of the Pb beam. They show features characteristic of collective anisotropic flow, similar to that observed in Pb+Pb collisions. A comparison is made to results obtained using two-particle correlation methods, and to predictions from hydrodynamic models of p+Pb collisions. Despite the small transverse spatial extent of the p+Pb collision system, the large magnitude of v_2 and its similarity to hydrodynamic predictions provide additional evidence for the importance of final-state effects in p+Pb reactions.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in the event activity bin of 25-40 GeV.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in the event activity bin of 40-55 GeV.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in the event activity bin of 55-80 GeV.
The PHENIX collaboration at the Relativistic Heavy Ion Collider (RHIC) reports measurements of azimuthal dihadron correlations near midrapidity in $d$$+$Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV. These measurements complement recent analyses by experiments at the Large Hadron Collider (LHC) involving central $p$$+$Pb collisions at $\sqrt{s_{_{NN}}}$=5.02 TeV, which have indicated strong anisotropic long-range correlations in angular distributions of hadron pairs. The origin of these anisotropies is currently unknown. Various competing explanations include parton saturation and hydrodynamic flow. We observe qualitatively similar, but larger, anisotropies in $d$$+$Au collisions compared to those seen in $p$$+$Pb collisions at the LHC. The larger extracted $v_2$ values in $d$$+$Au collisions at RHIC are consistent with expectations from hydrodynamic calculations owing to the larger expected initial-state eccentricity compared with that from $p$$+$Pb collisions. When both are divided by an estimate of the initial-state eccentricity the scaled anisotropies follow a common trend with multiplicity that may extend to heavy ion data at RHIC and the LHC, where the anisotropies are widely thought to arise from hydrodynamic flow.
The second-order pair anisotropy, c2, of the central collision excess as a function of associated particle pT.
The third-order pair anisotropy, c3, of the central collision excess as a function of associated particle pT.
Charged hadron second-order anisotropy, v2, as a function of pT.
A study is reported of the same- and opposite-sign charge-dependent azimuthal correlations with respect to the event plane in Au+Au collisions at 200 GeV. The charge multiplicity asymmetries between the up/down and left/right hemispheres relative to the event plane are utilized. The contributions from statistical fluctuations and detector effects were subtracted from the (co-)variance of the observed charge multiplicity asymmetries. In the mid- to most-central collisions, the same- (opposite-) sign pairs are preferentially emitted in back-to-back (aligned on the same-side) directions. The charge separation across the event plane, measured by the difference, $\Delta$, between the like- and unlike-sign up/down $-$ left/right correlations, is largest near the event plane. The difference is found to be proportional to the event-by-event final-state particle ellipticity (via the observed second-order harmonic $v^{\rm obs}_{2}$), where $\Delta=(1.3\pm1.4({\rm stat})^{+4.0}_{-1.0}({\rm syst}))\times10^{-5}+(3.2\pm0.2({\rm stat})^{+0.4}_{-0.3}({\rm syst}))\times10^{-3}v^{\rm obs}_{2}$ for 20-40% Au+Au collisions. The implications for the proposed chiral magnetic effect are discussed.
Centrality dependences of the charge asymmetry dynamical correlations, $\delta\langle A^{2}\rangle$, and the positive and negative charge asymmetry correlations, $\delta\langle A_{+}A_{-}\rangle$. The asymmetries are calculated between hemispheres separated by the event plane (UD) and between those separated by the plane perpendicular to the event plane (LR). The asymmetry correlations are multiplied by the number of participants $N_{part}$. The upper (lower) shaded band shows half of the systematic uncertainty in the $\delta\langle A_{+}A_{-}\rangle$ ($\delta\langle A^{2}\rangle$); the larger of the UD\ and LR\ systematic uncertainties is drawn. The stars and triangles depict the $d$+Au results.
The correlation differences $\Delta\langle A^{2}\rangle=\delta\langle A^{2}_{ UD}\rangle-\delta\langle A^{2}_{ LR}\rangle$ and $\Delta\langle A_{+}A_{-}\rangle=\delta\langle A_{+}A_{-}\rangle_{ UD}-\delta\langle A_{+}A_{-}\rangle_{ LR}$, scaled by the number of participants $N_{part}$, as a function of $N_{part}$. The error bars are statistical, and the systematic uncertainties are shown in the shaded bands (upper band for $\Delta\langle A_{+}A_{-}\rangle$ and lower band for $\Delta\langle A^{2}\rangle$). Also shown as the lines are the linear-extrapolated values of $\Delta\langle A^{2}\rangle$ and $\Delta\langle A_{+}A_{-}\rangle$ corresponding to a perfect event-plane resolution. The star and triangle depict the $d$+Au results.
The $p_{T}$ dependence of the charge asymmetry dynamical correlations, $\delta\langle A^{2}\rangle$, and the positive and negative charge asymmetry correlations, $\delta\langle A_{+}A_{-}\rangle$. The data are from 20-40% central Au+Au collisions. The asymmetries are calculated between hemispheres separated by the event plane (UD) and between those separated by the plane perpendicular to the event plane (LR).
A search for pair-produced third generation scalar leptoquarks is presented, using proton-proton collisions at $\sqrt{s}$= 7 TeV at the LHC. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 4.7 fb$^{-1}$. Each leptoquark is assumed to decay to a tau lepton and a b-quark with a branching fraction equal to 100%. No statistically significant excess above the Standard Model expectation is observed. Third generation leptoquarks are therefore excluded at 95% confidence level for masses less than 534 GeV.
The expected and observed 95% credibility upper limits on the cross-section of third generation leptoquark pair-production for the electron channel assuming a branching fraction LQ->tau b of 1.0, as a function of leptoquark mass. The 1(2) sigma errors on the expected limit represent all sources of systematic and statistical uncertainty. The expected NLO production cross-section for third generation scalar leptoquarks and its corresponding theoretical uncertainty is also included.
The expected and observed 95% credibility upper limits on the cross-section of third generation leptoquark pair-production for the muon channel assuming a branching fraction LQ->tau b of 1.0, as a function of leptoquark mass. The 1(2) sigma errors on the expected limit represent all sources of systematic and statistical uncertainty. The expected NLO production cross-section for third generation scalar leptoquarks and its corresponding theoretical uncertainty is also included.
The expected and observed 95% credibility upper limits on the cross-section of third generation leptoquark pair-production for the combined assuming a branching fraction LQ->tau b of 1.0, as a function of leptoquark mass. The 1(2) sigma errors on the expected limit represent all sources of systematic and statistical uncertainty. The expected NLO production cross-section for third generation scalar leptoquarks and its corresponding theoretical uncertainty is also included.
Azimuthal angular correlations of charged hadrons with respect to the axis of a reconstructed (trigger) jet in Au+Au and p+p collisions at $\sqrt{s_{\text{NN}}} = 200 \text{GeV}$ in STAR are presented. The trigger jet population in Au+Au collisions is biased towards jets that have not interacted with the medium, allowing easier matching of jet energies between Au+Au and p+p collisions while enhancing medium effects on the recoil jet. The associated hadron yield of the recoil jet is significantly suppressed at high transverse momentum ($p_{\text{T}}^{\text{assoc}}$) and enhanced at low $p_{\text{T}}^{\text{assoc}}$ in 0-20% central Au+Au collisions compared to p+p collisions, which is indicative of medium-induced parton energy loss in ultrarelativistic heavy-ion collisions.
Jet-hadron correlations after background subtraction. Shown with Gaussian fits to jet peaks and systematic uncertanty bands Au+Au(0.5-1 GeV).
Jet-hadron correlations after background subtraction. Shown with Gaussian fits to jet peaks and systematic uncertanty bands p+p(0.5-1).
Jet-hadron correlations after background subtraction. Shown with Gaussian fits to jet peaks and systematic uncertanty bands Au+Au(4-6 GeV).
Previous experimental results based on data (15 million events) collected by the STAR detector at RHIC suggest event-by-event charge separation fluctuations perpendicular to the event plane in non-central heavy-ion collisions. Here we present the correlator previously used split into its two component parts to reveal correlations parallel and perpendicular to the event plane. The results are from a high statistics 200 GeV Au+Au collisions data set (57 million events) collected by the STAR experiment. We explicitly count units of charge separation from which we find clear evidence for more charge separation fluctuations perpendicular than parallel to the event plane. We also employ a modified correlator to study the possible P-even background in same and opposite charge correlations, and find that the P-even background may largely be explained by momentum conservation and collective motion.
(Color online) $\Delta RMS^{\Delta Q}/\langle RMS^{\Delta Q}\rangle$ versus centrality for Au+Au collisions at $\sqrt{s_{NN}}$= 200 GeV. Not corrected for event plane resolution. Errors are statistical only.
(Color online) $\langle sin(\phi_{\alpha} − \Psi_{1})\rangle$ for positive and negative charges versus centrality for Au+Au collisions at $\sqrt{s_{NN}}$= 200 GeV. Shaded area represents the systematic uncertainty for both charge types obtained by comparing correlations from positive and negative pseudorapidity.
(Color online) Three-point correlator, Eq. 1, measured with $1^{st}$ and $2^{nd}$ harmonic event planes versus centrality for Au+Au collisions at $\sqrt{s_{NN}}$= 200 GeV. Shown with crosses are our previous results from the 2004 RHIC run (Y4) [9, 10]. The Y4 run used a second harmonic event plane. Y4 and Y7 $\Psi_{2}$ results are consistent within statistical errors. Shaded areas for the $2^{nd}$ harmonic points represent the systematic uncertainty of the event plane determination. Systematic uncertainties for the $1^{st}$ harmonic points are negligible compared to the statistical ones shown.
We present measurements of three-dimensional correlation functions of like-sign low transverse momentum kaon pairs from sqrt(sNN)=200 GeV Au+Au collisions. A Cartesian surface-spherical harmonic decomposition technique was used to extract the kaon source function. The latter was found to have a three-dimensional Gaussian shape and can be adequately reproduced by Therminator event generator simulations with resonance contributions taken into account. Compared to the pion one, the kaon source function is generally narrower and does not have the long tail along the pair transverse momentum direction. The kaon Gaussian radii display a monotonic decrease with increasing transverse mass m_T over the interval of 0.55<=m_T<=1.15 GeV/c^2. While the kaon radii are adequately described by the m_T-scaling in the outward and sideward directions, in the longitudinal direction the lowest m_T value exceeds the expectations from a pure hydrodynamical model prediction.
Independent correlation moments Rl(q) for orders l = 0,2,4 for midrapidity, low transverse momentum kaon pairs from the 20% most central Au+Au collisions at sqrt(sNN)=200 GeV
Kaon correlation function profiles for midrapidity, low transverse momentum kaon pairs from the 20% most central Au+Au collisions at sqrt(sNN)=200 GeV
Kaon source function profiles extracted from the data
This paper reports a measurement of the W+b-jets production cross-section in proton-proton collisions at a centre-of-mass energy of 7 TeV at the LHC. These results are based on data corresponding to an integrated luminosity of 4.6 fb-1, collected with the ATLAS detector. Cross-sections are presented as a function of jet multiplicity and of the transverse momentum of the leading b-jet for both the muon and electron decay modes of the W boson. The W+b-jets cross-section, corrected for all known detector effects, is quoted in a limited kinematic range, using jets reconstructed with the anti-k_t clustering algorithm with transverse momentum above 25 GeV and rapidity within +/- 2.1. Combining the muon and electron channels, the fiducial cross-section for W+b-jets is measured to be 7.1 +/- 0.5 (stat) +/- 1.4 (syst) pb, consistent with next-to-leading order QCD calculations within 1.5 standard deviations.
Measured fiducial $W+b$-jets cross-sections for the combination of the electron and muon channels with statistical and systematic uncertainties and breakdown of relative systematic uncertainties per jet multiplicity, and combined across jet bins. Also shown are the cross sections obtained without single-top subtraction.
Breakdown of relative systematic uncertainties per jet multiplicity, and combined across jet bins.
Measured fiducial $W+b$-jets cross-section in the 1-jet region with statistical and systematic uncertainties in bins of $p_T^{b-jet}$. Also shown are the cross sections obtained without single-top subtraction. UPDATE (04 MAY 2019): units corrected from nb/GeV to fb/GeV.
A measurement of splitting scales, as defined by the kT clustering algorithm, is presented for final states containing a W boson produced in proton--proton collisions at a centre-of-mass energy of 7 TeV. The measurement is based on the full 2010 data sample corresponding to an integrated luminosity of 36 pb-1 which was collected using the ATLAS detector at the CERN Large Hadron Collider. Cluster splitting scales are measured in events containing W bosons decaying to electrons or muons. The measurement comprises the four hardest splitting scales in a kT cluster sequence of the hadronic activity accompanying the W boson, and ratios of these splitting scales. Backgrounds such as multi-jet and top-quark-pair production are subtracted and the results are corrected for detector effects. Predictions from various Monte Carlo event generators at particle level are compared to the data. Overall, reasonable agreement is found with all generators, but larger deviations between the predictions and the data are evident in the soft regions of the splitting scales.
Distributions of the splitting scale variable sqrt(d0) shown separately for the Electron and Muon decay modes of the W boson.
Distributions of the splitting scale variable sqrt(d1) shown separately for the Electron and Muon decay modes of the W boson.
Distributions of the splitting scale variable sqrt(d2) shown separately for the Electron and Muon decay modes of the W boson.