Measurements of the differential cross-section and the transverse single-spin asymmetry, A_N, vs. x_F for pi0 and eta mesons are reported for 0.4 < x_F < 0.75 at an average pseudorapidity of 3.68. A data sample of approximately 6.3 pb^{-1} was analyzed, which was recorded during p+p collisions at sqrt{s} = 200 GeV by the STAR experiment at RHIC. The average transverse beam polarization was 56%. The cross-section for pi0 is consistent with a perturbative QCD prediction, and the eta/pi0 cross-section ratio agrees with previous mid-rapidity measurements. For 0.55 < x_F < 0.75, A_N for eta (0.210 +- 0.056) is 2.2 standard deviations larger than A_N for pi0 (0.081 +- 0.016).
(c) $A_N$ vs. $M_{\gamma\gamma}$ for the above mass distribution. The error bars are statistical uncertainties only.
Differential production cross-sections for $\pi^0$ and $\eta$ at average pseudorapidity of 3.68. Also shown are the previously published STAR results for similar kinematics [21] and a NLO pQCD calculation of the π0 cross-section [32]. The error band represents the uncertainty in the calculation due to scale variations.
The $\eta$ to $\pi^0$ cross-section ratio is shown in the bottom panel. The error bars indicate the total statistical and systematic uncertainties.
We report STAR measurements of the longitudinal double-spin asymmetry A_LL, the transverse single-spin asymmetry A_N, and the transverse double-spin asymmetries A_Sigma and A_TT for inclusive jet production at mid-rapidity in polarized p+p collisions at a center-of-mass energy of sqrt{s} = 200 GeV. The data represent integrated luminosities of 7.6 /pb with longitudinal polarization and 1.8 /pb with transverse polarization, with 50-55% beam polarization, and were recorded in 2005 and 2006. No evidence is found for the existence of statistically significant jet A_N, A_Sigma, or A_TT at mid-rapidity. Recent model calculations indicate the A_N results may provide new limits on the gluon Sivers distribution in the proton. The asymmetry A_LL significantly improves the knowledge of gluon polarization in the nucleon.
(color online) $A_{N}$ as a function of the corrected mean $p_{T}$ for 2006 transverse data. The panels present $A_{N}$ for four different $\eta$ bins. $A_{N}$ is the left-right single-spin asymmetry for a transversely polarized beam. The errors shown combine the statistical uncertainties, which dominate, with all systematic uncertainties except trigger and reconstruction bias. See Sect. V A for a discussion of the latter.
(color online) $A_{N}$ as a function of the corrected mean $p_{T}$ for 2006 transverse data. The panels present $A_{N}$ for four different $\eta$ bins. $A_{N}$ is the left-right single-spin asymmetry for a transversely polarized beam. The errors shown combine the statistical uncertainties, which dominate, with all systematic uncertainties except trigger and reconstruction bias. See Sect. V A for a discussion of the latter.
(color online) $A_{N}$ as a function of the corrected mean $p_{T}$ for 2006 transverse data. The panels present $A_{N}$ for four different $\eta$ bins. $A_{N}$ is the left-right single-spin asymmetry for a transversely polarized beam. The errors shown combine the statistical uncertainties, which dominate, with all systematic uncertainties except trigger and reconstruction bias. See Sect. V A for a discussion of the latter.
A precise measurement of the cross section of the process $e^+e^-\to\pi^+\pi^-(\gamma)$ from threshold to an energy of 3GeV is obtained with the initial-state radiation (ISR) method using 232fb$^{-1}$ of data collected with the BaBar detector at $e^+e^-$ center-of-mass energies near 10.6GeV. The ISR luminosity is determined from a study of the leptonic process $e^+e^-\to\mu^+\mu^-(\gamma)\gamma_{\rm ISR}$, which is found to agree with the next-to-leading-order QED prediction to within 1.1%. The cross section for the process $e^+e^-\to\pi^+\pi^-(\gamma)$ is obtained with a systematic uncertainty of 0.5% in the dominant $\rho$ resonance region. The leading-order hadronic contribution to the muon magnetic anomaly calculated using the measured $\pi\pi$ cross section from threshold to 1.8GeV is $(514.1 \pm 2.2({\rm stat}) \pm 3.1({\rm syst}))\times 10^{-10}$.
Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ The cross section values (nb) for 337 CM energy intervals (GeV) from 0.3 to 3 GeV. The cross section is bare (excluding vacuum polarization) and includes the emission of final state photons. ***WARNING*** The quoted errors are from the diagonal elements of the statistical covariance matrix (reported on the Table titled "Bare cross-section statistical covariance") and added quadratically with the systematic uncertainties (reported in the Table titled "Bare cross-section systematic uncertainties"). These errors can be used when plotting the results as they are representative of the precision achieved. However, any calculation involving the cross section over some energy range MUST use, to be meaningful, the full statistical covariance matrix and the proper correlations of the systematic uncertainties. ***WARNING*** The Bare cross-section statistical covariance is reported as additional resource in YAML, since its size exceeds the maximum size of 10 MB for the library hepdata_lib. It is a statistical covariance matrix, for 337x337 CM energy intervals (GeV), from 0.3 to 3 GeV, matching the ones of this table.
Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ systematic uncertainties contributions and total systematic uncertainties, for 337 CM energy intervals (GeV), from 0.3 to 3 GeV. All systematics contributions are each 100% correlated in all energy bins.
Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ statistical covariance matrix, for 337x337 CM energy intervals (GeV), from 0.3 to 3 GeV.
The results of a search for pair production of the lighter scalar partners of top quarks in 2.05 fb-1 of pp collisions at sqrt(s) =7 TeV using the ATLAS experiment at the LHC are reported. Scalar top quarks are searched for in events with two same flavour opposite-sign leptons (electrons or muons) with invariant mass consistent with the Z boson mass, large missing transverse momentum and jets in the final state. At least one of the jets is identified as originating from a b-quark. No excess over Standard Model expectations is found. The results are interpreted in the framework of R-parity conserving, gauge mediated Supersymmetry breaking `natural' scenarios, where the neutralino is the next-to-lightest supersymmetric particle. Scalar top quark masses up to 310 GeV are excluded for the lightest neutralino mass between 115 GeV and 230 GeV at 95% confidence level, reaching an exclusion of the scalar top quark mass of 330 GeV for the lightest neutralino mass of 190 GeV. Scalar top quark masses below 240 GeV are excluded for all values of the lightest neutralino mass above the Z boson mass.
The missing ET distribution from the combined EE and MUMU data for SR1. Tabulated are the observed Data rates and the Standard Model predictions as well as the distributions expected for two signal scenarios, both with an STOP mass of 250 GeV, and NEUTRALINO1 masses of 100 GeV and 220 GeV respectively.
The number of b-tagged jets for SR1 for the combined EE and MUMU channels. Tabulated are the observed Data rates and the Standard Model predictions as well as the distributions expected for two signal scenarios, both with an STOP mass of 250 GeV, and NEUTRALINO1 masses of 100 GeV and 220 GeV respectively.
The distrubution of leading jet pT for SR1 for the combined EE and MUMU channels. Tabulated are the observed Data rates and the Standard Model predictions as well as the distributions expected for two signal scenarios, both with an STOP mass of 250 GeV, and NEUTRALINO1 masses of 100 GeV and 220 GeV respectively. The last pT bin includes the number of overflow events for both data abd SM expectation.
A search for the weak production of charginos and neutralinos into final states with three electrons or muons and missing transverse momentum is presented. The analysis uses 2.06 fb^-1 of sqrt(s) = 7 TeV proton-proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with standard model expectations in two signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric and simplified models. For the simplified models, degenerate lightest chargino and next-to-lightest neutralino masses up to 300 GeV are excluded for mass differences from the lightest neutralino up to 300 GeV.
Transverse momentum distribution for the first leading lepton for events in the SR1 signal region for DATA and SM predictions.
Transverse momentum distribution for the first leading lepton for events in the SR2 signal region for DATA and SM predictions.
Transverse momentum distribution for the second leading lepton for events in the SR1 signal region for DATA and SM predictions.
A search for production of supersymmetric particles in final states containing jets, missing transverse momentum, and at least one hadronically decaying tau lepton is presented. The data were recorded by the ATLAS experiment in sqrt(s) = 7 TeV proton-proton collisions at the Large Hadron Collider. No excess above the Standard Model background expectation was observed in 2.05 fb-1 of data. The results are interpreted in the context of gauge mediated supersymmetry breaking models with Mmess = 250 TeV, N5 = 3, mu > 0, and Cgrav = 1. The production of supersymmetric particles is excluded at 95% C.L. up to a supersymmetry breaking scale Lambda = 30 Tev, independent of tan(beta), and up to Lambda = 43 TeV for large tan(beta).
Distribution of the missing transverse energy before final selection requirement on the effective mass. Tabulated are the observed Data events, the Standard Model predictions and the expected rates for two signal scenarios with Lambda=30TeV / tan(beta) = 20 and Lambda=40GeV / tan(beta)=30 respectively.
Distribution of the tau pt before final selection requirement on the effective mass. Tabulated are the observed Data events, the Standard Model predictions and the expected rates for two signal scenarios with Lambda=30TeV / tan(beta) = 20 and Lambda=40GeV / tan(beta)=30 respectively.
Distribution of the effective mass before final selection requirement on the effective mass. Tabulated are the observed Data events, the Standard Model predictions and the expected rates for two signal scenarios with Lambda=30TeV / tan(beta) = 20 and Lambda=40GeV / tan(beta)=30 respectively.
We report measurements of charmed-hadron ($D^{0}$, $D^{*}$) production cross sections at mid-rapidity in $p$ + $p$ collisions at a center-of-mass energy of 200 GeV by the STAR experiment. Charmed hadrons were reconstructed via the hadronic decays $D^{0}\rightarrow K^{-}\pi^{+}$, $D^{*+}\rightarrow D^{0}\pi^{+}\rightarrow K^{-}\pi^{+}\pi^{+}$ and their charge conjugates, covering the $p_T$ range of 0.6$-$2.0 GeV/$c$ and 2.0$-$6.0 GeV/$c$ for $D^{0}$ and $D^{*+}$, respectively. From this analysis, the charm-pair production cross section at mid-rapidity is $d\sigma/dy|_{y=0}^{c\bar{c}}$ = 170 $\pm$ 45 (stat.) $^{+38}_{-59}$ (sys.) $\mu$b. The extracted charm-pair cross section is compared to perturbative QCD calculations. The transverse momentum differential cross section is found to be consistent with the upper bound of a Fixed-Order Next-to-Leading Logarithm calculation.
$c\bar{c}$ production cross section as inferred from D$^0$ and D$^\star$ production in p+p collisions at $\sqrt{s} = 200$ GeV at $|\eta| < 1$ compared with FONLL calculations. The D$^0$ and D$^\star$ data points were divided by the charm quark fragmentation ratios 0.565 ($c \rightarrow$ D$^0$) and 0.224 ($c \rightarrow$ D$^{\star +}$) [34], respectively, to convert to the $c\bar{c}$ production cross section.
Neutral-pion, pi^0, spectra were measured at midrapidity (|y|<0.35) in Au+Au collisions at sqrt(s_NN) = 39 and 62.4 GeV and compared to earlier measurements at 200 GeV in the 1<p_T<10 GeV/c transverse-momentum (p_T) range. The high-p_T tail is well described by a power law in all cases and the powers decrease significantly with decreasing center-of-mass energy. The change of powers is very similar to that observed in the corresponding p+p-collision spectra. The nuclear-modification factors (R_AA) show significant suppression and a distinct energy dependence at moderate p_T in central collisions. At high p_T, R_AA is similar for 62.4 and 200 GeV at all centralities. Perturbative-quantum-chromodynamics calculations that describe R_AA well at 200 GeV, fail to describe the 39 GeV data, raising the possibility that the relative importance of initial-state effects and soft processes increases at lower energies. A conclusion that the region where hard processes are dominant is reached only at higher p_T, is also supported by the x_T dependence of the x_T-scaling power-law exponent.
INVARIANT YIELDS
INVARIANT YIELDS
INVARIANT YIELDS
We report on mid-rapidity mass spectrum of di-electrons and cross sections of pseudoscalar and vector mesons via $e^{+}e^{-}$ decays, from $\sqrt{s} = 200$ GeV $p+p$ collisions, measured by the large acceptance experiment STAR at RHIC. The ratio of the di-electron continuum to the combinatorial background is larger than 10% over the entire mass range. Simulations of di-electrons from light-meson decays and heavy-flavor decays (charmonium and open charm correlation) are found to describe the data. The extracted $\omega\rightarrow e^{+}e^{-}$ invariant yields are consistent with previous measurements. The mid-rapidity yields ($dN/dy$) of $\phi$ and $J/\psi$ are extracted through their di-electron decay channels and are consistent with the previous measurements of $\phi\rightarrow K^{+}K^{-}$ and $J/\psi\rightarrow e^{+}e^{-}$. Our results suggest a new upper limit of the branching ratio of the $\eta \rightarrow e^{+}e^{-}$ of $1.7\times10^{-5}$ at 90% confidence level.
The electron-pair invariant mass distri- butions for unlike-sign pairs in minimum-bias p + p collisions.
The electron-pair invariant mass distributions for like-sign pairs in minimum-bias p + p collisions.
The electron-pair invariant mass distributions for mix-event pairs in minimum-bias p + p collisions.
We present measured J/psi production rates in d+Au collisions at sqrt(s_NN) = 200 GeV over a broad range of transverse momentum (p_T=0-14 GeV/c) and rapidity (-2.2<y<2.2). We construct the nuclear-modification factor R_dAu for these kinematics and as a function of collision centrality (related to impact parameter for the R_dAu collision). We find that the modification is largest for collisions with small impact parameters, and observe a suppression (R_dAu<1) for p_T<4 GeV/c at positive rapidities. At negative rapidity we observe a suppression for p_T<2 GeV/c then an enhancement (R_dAu>1) for p_T>2 GeV/c. The observed enhancement at negative rapidity has implications for the observed modification in heavy-ion collisions at high p_T.
$J/\psi$ invariant yield as a function of $p_T$ for $p+p$ and 0–100% centrality integrated $d$+Au collisions. The type C systematic uncertainty for each distribution is given as a percentage in the legend. Type A represents uncertainties that are uncorrelated from point to point, Type B represents uncertainties that are correlated from point to point, and Type C represents uncertainties in the overall normalization.
$J/\psi$ invariant yield as a function of $p_T$ for $p+p$ and 0–100% centrality integrated $d$+Au collisions. The type C systematic uncertainty for each distribution is given as a percentage in the legend. Type A represents uncertainties that are uncorrelated from point to point, Type B represents uncertainties that are correlated from point to point, and Type C represents uncertainties in the overall normalization.
$J/\psi$ invariant yield as a function of $p_T$ for $p+p$ and 0–100% centrality integrated $d$+Au collisions. The type C systematic uncertainty for each distribution is given as a percentage in the legend.Type A represents uncertainties that are uncorrelated from point to point, Type B represents uncertainties that are correlated from point to point, and Type C represents uncertainties in the overall normalization.